Multimorbidity (MM) is the co-occurrence of two or more chronic diseases. We provided a dynamic approach revealing the MM complexity constructing a multistep incidence-age model for all patients with MM between 2014 and 2021 in the Basque Health System, Spain. The multistep model, with eight steps for males and nine for females, is a very well-fitting representation of MM. To gain insight into the MM components, we modeled the 19 diseases used to calculate the Charlson Comorbidity Index (CCI). We observed that the CCI diseases formed a complex interaction network. Hierarchical clustering of the incidence-age profiles clustered the CCI diseases into low- and high-risk of dying pathologies. Diseases with a higher number of steps are better represented by a multistep model. Anatomically, diseases associated with the central nervous system have the highest number of steps, followed by those associated with the kidney, heart, peripheral vasulature, pancreas, joints, cerebral vasculature, lung, stomach, and liver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407032 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.110816 | DOI Listing |
J Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electronic Engineering, Tsinghua University, Beijing, China.
Deep generative models have garnered significant attention for their efficiency in drug discovery, yet the synthesis of proposed molecules remains a challenge. Retrosynthetic planning, a part of computer-assisted synthesis planning, addresses this challenge by recursively decomposing molecules using symbolic rules and machine-trained scoring functions. However, current methods often treat each molecule independently, missing the opportunity to utilize shared synthesis patterns and repeat pathways, which may contribute from known synthesis routes to newly emerging, similar molecules, a notable challenge with AI-generated small molecules.
View Article and Find Full Text PDFNat Commun
January 2025
NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA.
Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth's bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive.
View Article and Find Full Text PDFEnviron Res
December 2024
Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel. Electronic address:
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!