An optimized live imaging and multiple cell layer growth analysis approach using Arabidopsis sepals.

Front Plant Sci

Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States.

Published: September 2024

sepals are excellent models for analyzing growth of entire organs due to their relatively small size, which can be captured at a cellular resolution under a confocal microscope. To investigate how differential growth of connected cell layers generate unique organ morphologies, it is necessary to live-image deep into the tissue. However, imaging deep cell layers of the sepal (or plant tissues in general) is practically challenging. Image processing is also difficult due to the low signal-to-noise ratio of the deeper tissue layers, an issue mainly associated with live imaging datasets. Addressing some of these challenges, we provide an optimized methodology for live imaging sepals, and subsequent image processing. For live imaging early-stage sepals, we found that the use of a bright fluorescent membrane marker, coupled with increased laser intensity and an enhanced Z- resolution produces high-quality images suitable for downstream image processing. Our optimized parameters allowed us to image the bottommost cell layer of the sepal (inner epidermal layer) without compromising viability. We used a 'voxel removal' technique to visualize the inner epidermal layer in MorphoGraphX image processing software. We also describe the MorphoGraphX parameters for creating a 2.5D mesh surface for the inner epidermis. Our parameters allow for the segmentation and parent tracking of individual cells through multiple time points, despite the weak signal of the inner epidermal cells. While we have used sepals to illustrate our approach, the methodology will be useful for researchers intending to live-image and track growth of deeper cell layers in 2.5D for any plant tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405221PMC
http://dx.doi.org/10.3389/fpls.2024.1449195DOI Listing

Publication Analysis

Top Keywords

live imaging
16
image processing
16
cell layers
12
inner epidermal
12
cell layer
8
epidermal layer
8
imaging
5
cell
5
sepals
5
image
5

Similar Publications

Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.

View Article and Find Full Text PDF

Adaptive or non-adaptive? Cranial evolution in a radiation of miniaturized day geckos.

BMC Ecol Evol

December 2024

Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.

Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy.

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate .

Front Microbiol

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.

Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!