Exercise training can significantly improve skeletal muscle mitochondrial function and has been proven to be highly relevant to alterations in skeletal muscle DNA methylation. However, it remains unclear whether late-in-life exercise has an effect on promoter methylation of PGC-1α, a key regulator of mitochondrial biogenesis. Here we employed two distinct exercise modalities, constant medium intensity exercise training (CMIT) and high-intensity interval exercise training (HIIT), to investigate their impacts on PGC-1α expression and methylation regulation in skeletal muscle of aged mice. The results revealed a notable decrease in PGC-1α expression in skeletal muscle of aged mice, accompanied by elevated methylation levels of the PGC-1α promoter, and increased DNA methyltransferase (DNMT) protein expressions. However, both forms of exercise training significantly corrected PGC-1α epigenetic changes, increased PGC-1α expression, and ameliorated skeletal muscle reduction. Furthermore, exercise training led to elevated expression of proteins related to mitochondrial biogenesis and energy metabolism in skeletal muscle, improving mitochondrial structure and function. In conclusion, late-in-life exercise improved skeletal muscle function, morphology, and mitochondria biogenesis, which may be associated with hypomethylation in promoters of PGC-1α and increased content of skeletal muscle PGC-1α. Notably, there was no clear difference between HIIT and CMIT in PGC-1α expression and skeletal muscle function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406220 | PMC |
http://dx.doi.org/10.1515/biol-2022-0959 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!