Hydrogen sulfide (H2S) played a pivotal role in the early evolution of life on Earth before the predominance of atmospheric oxygen. The legacy of a persistent role for H2S in life's processes recently emerged through its discovery in modern biochemistry as an endogenous cellular signalling modulator involved in numerous biological processes. One major mechanism through which H2S signals is protein cysteine persulfidation, an oxidative post-translational modification. In recent years, chemoproteomic technologies have been developed to allow the global scanning of protein persulfidation targets in mammalian cells and tissues, providing a powerful tool to elucidate the broader impact of altered H2S in organismal physiological health and human disease states. While hundreds of proteins were confirmed to be persulfidated by global persulfidome methodologies, the targeting of specific proteins of interest and the investigation of further mechanistic studies are still underdeveloped due to a lack of stringent specificity of the methods and the inherent instability of persulfides. This review provides an overview of the processes of endogenous H2S production, oxidation, and signalling and highlights the application and limitations of current persulfidation labelling approaches for investigation of this important evolutionarily conserved biological switch for protein function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625863 | PMC |
http://dx.doi.org/10.1042/EBC20230095 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFJ Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China.
Insulin resistance, a hallmark of type 2 diabetes, accelerates muscle breakdown and impairs energy metabolism. However, the role of Ubiquitin Specific Peptidase 2 (USP2), a key regulator of insulin resistance, in sarcopenia remains unclear. Peroxisome proliferator activated receptor γ (PPARγ) plays a critical role in regulating muscle atrophy.
View Article and Find Full Text PDFPLoS Biol
January 2025
Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!