Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2024.2399016 | DOI Listing |
Am J Cancer Res
December 2024
Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University Guangzhou 510000, Guangdong, China.
This study aims to construct and optimize risk prediction models for lymph node metastasis (LNM) in endometrial carcinoma (EC) patients, thus improving the identification of patients at high risk of LNM and further providing accurate support for clinical decision-making. This retrospective analysis included 541 cases of EC treated at The First Affiliated Hospital, Jinan University between January 2017 and January 2022. Various clinical and pathological variables were incorporated, including age, body mass index (BMI), pathological grading, myometrial invasion, lymphovascular space invasion (LVSI), estrogen receptor (ER) and progesterone receptor (PR) levels, and tumor size.
View Article and Find Full Text PDFBio Protoc
January 2025
Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.
View Article and Find Full Text PDFProtein content is an important index in the assessment of dairy nutrition. As a crucial source of protein absorption in people's daily life, the quality of milk powder products not only has a deep impact on the development of the dairy industry, but also seriously damages the health of consumers. It is of great significance to find a faster and more accurate method for detecting milk protein content.
View Article and Find Full Text PDFBiophys Physicobiol
September 2024
Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
Computerized molecular docking methodologies are pivotal in screening, a crucial facet of modern drug design. ChooseLD, a docking simulation software, combines structure- and ligand-based drug design methods with empirical scoring. Despite advancements in computerized molecular docking methodologies, there remains a gap in optimizing the predictive capabilities of docking simulation software.
View Article and Find Full Text PDFThe optimal strategy for improving cardiometabolic factors (CMFs) in young obese individuals through diet and exercise remains unclear, as do the potential mechanisms. We conducted an 8-week randomized controlled trial to compare the effects of different interventions in youth with overweight/obesity. Gut microbes and serum metabolites were examined to identify regulating mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!