Cooperative wrapping of nanoparticles (NPs) with small sizes is an important pathway for the uptake of NPs by cell membranes. However, the cooperative wrapping efficiency and the effects of NPs' rigidity remain ambiguous. With the aid of computer simulations, we show that the complete wrapping mechanism of cooperative endocytosis is that the aggregation of NPs leads to greater wrapping forces than the single NP case, which triggers the increase of the wrapping degree and in turn further increases the wrapping forces until they are finally fully taken up. The effects of the NP size, initial distance, interaction strength, arrangement and stiffness on cooperative endocytosis were systematically studied. The cooperative wrapping efficiency increases as the NP radius increases. Hexagonal close packed NPs have the highest internalization efficiency. When the interactions are strong, softer NPs exhibit higher endocytosis efficiency. We further propose two strategies by combining NPs with different wrapping properties for targeting applications. By combining two NPs decorated with different types of ligands, the combination NPs can only be fully endocytosed by the cell membrane with two cognate types of receptors and adhere to the normal cell membrane with only one type of receptor. We also design composite NPs using a large NP non-covalently decorated with several small NPs. By harnessing the competition between the ligand-receptor interactions and the excluded volume interactions between the small NPs and the lipid membrane, the composite NPs have targeting ability towards the cancer cell membrane. The design concept of combining NPs with different wrapping properties for drug targeting applications may be very promising in biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01853b | DOI Listing |
Appl Biochem Biotechnol
January 2025
Ethnopharmacology and Algal Biotechnology Laboratory, Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636011, India.
In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.
View Article and Find Full Text PDFDiscov Nano
January 2025
Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt.
The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!