Lignin Nanoparticles as pH-responsive Nanocarriers for Gastric-Irritant Oral Drug Aspirin.

Curr Drug Deliv

Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong-4331, Bangladesh.

Published: September 2024

Introduction: Although lignin is one of the most naturally abundant biopolymers, the overall status of its utilization has long been subpar. The ability of Lignin to readily self-assemble into nanoparticles, along with its good biocompatibility and minimal toxicity, makes it a perfect agent for nanocarriers and drug delivery.

Method: Hence, in this study, we have attempted to examine lignin nanoparticles (LNPs) as an efficient pH-responsive nanocarrier for gastric-irritant oral NSAID, aspirin. Alkali lignin (AL) was extracted from rice straw via alkaline treatment, and the lignin nanoparticles were synthesized from lignin using the acid precipitation method. The average particle size was 201.37 ± 1.20 nm, and the synthesized LNPs exhibited a spherical shape and smooth outer surface along with high polydispersity (PDI= 0.284 ± 0.012). The LNPs showed moderate hemocompatibility during in vitro hemolysis studies. The nanoparticles presented nearly similar chemical structures to the AL from which they were developed, and the FT-IR absorption spectra confirmed the similarity of this chemical structure to the LNPs and AL. Aspirin was successfully loaded into the LNPs with a satisfactory drug loading value of 39.12 ± 1.50 and an excellent encapsulation efficiency value of 91.44 ± 0.59.

Results: Finally, the LNPs were capable of protecting the loaded drug at the acidic pH of the stomach (1.2) with just 29.20% release of the loaded aspirin after 10 h of observation in vitro. Contrarily, the LNPs were capable of rapidly releasing the aspirin at the basic pH of the intestine (7.4) with nearly 90% release of the loaded drug after 10 h observation in vitro. The basic pH of the intestine might lead to gradual dissociation of the LNPs followed by swift release of the loaded cargo.

Conclusion: These findings substantiate that the LNPs carry the potential to be an apt and safe nanocarrier for oral drugs like aspirin as well as parenteral drugs, and LNPs can be utilized as an efficient alternative to enteric coating.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115672018318035240910050003DOI Listing

Publication Analysis

Top Keywords

lignin nanoparticles
12
release loaded
12
lnps
10
gastric-irritant oral
8
lnps capable
8
loaded drug
8
observation vitro
8
basic intestine
8
lignin
7
aspirin
6

Similar Publications

Novel high-efficiency nano metal oxide based on phosphorus as smart flame retardants with multiple reactive for sustainable cotton-polyester fabrics.

Int J Biol Macromol

January 2025

Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:

Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).

View Article and Find Full Text PDF

Lignosulfonate as a versatile regulator for the mediated synthesis of Ag@AgCl nanocubes.

Nanoscale

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.

The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.

View Article and Find Full Text PDF

Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications.

Int J Biol Macromol

December 2024

Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:

Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.

View Article and Find Full Text PDF

A review on bioactivity, plant safety, and metal-reducing potential of lignin, its micro/nanostructures, and composites.

Int J Biol Macromol

December 2024

Nano Fusion Technology Research Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address:

Modern science focuses on sustainability-oriented innovation. Structurally sophisticated lignin is a sustainable alternative to non-renewable resources. Over the last several years, a tremendous scientific effort has been made to innovate lignin-based sustainable materials for numerous advanced applications.

View Article and Find Full Text PDF

The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!