A comprehensive investigation into how nanostructures alter real-time DNA hybridization kinetics in both buffer and complex media and under a wide range of probe and target concentrations is currently lacking. In response, we use a real-time, wash-free, and assay to study DNA hybridization kinetics by performing continuous electrochemical measurements in different media. We investigated the differences in hybridization kinetics under three regimes of probe density (low, medium, and high) and over three orders of magnitude of target concentrations (0.01-1 μM). Additionally, we compared the performance of planar and nanostructured electrodes in buffer, blood, urine, and saliva. Our experiments indicate that adding nanostructures to the transducer surface is only effective under a specific probe/target concentration regime. Additionally, we found that direct electrochemical readout is possible in the examined physiological media, with measurements in blood showing the highest and saliva showing the lowest signal magnitudes compared to buffer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c00737 | DOI Listing |
Environ Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, Masai Johor, 81750, Malaysia.
The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, CHINA.
Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.
View Article and Find Full Text PDFJ Comput Aided Mol Des
December 2024
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201313, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!