AI Article Synopsis

  • The study developed a rapid and affordable method using HPLC-ultraviolet spectrometry to measure ampicillin levels in ICU patients' serum.
  • The method showed high accuracy and precision, with more than 90% of patients reaching the desired drug concentration range.
  • Implementing this technique can enhance personalized dosing and ensure effective treatment in critical care settings.

Article Abstract

Background: Ampicillin/sulbactam, a combination of a β-lactam and β-lactamase inhibitor, is widely used in clinical settings. However, therapeutic drug monitoring (TDM) of ampicillin is not commonly performed, particularly in intensive care units (ICUs). The purpose of this study was to develop and validate a rapid and cost-effective high-performance liquid chromatography (HPLC)-ultraviolet spectrometry method to quantify ampicillin in human serum and evaluate its clinical application in ICU patients.

Methods: Sample cleanup included a protein precipitation protocol, followed by chromatographic separation on a C18 reverse-phase HPLC column within 12.5 minutes using gradient elution of the mobile phase. The assay was validated according to the German Society of Toxicology and Forensic Chemistry criteria. Clinical applications involved the retrospective analysis of TDM data from ICU patients receiving continuous infusion of ampicillin/sulbactam, including the attainment of target ranges and individual predicted and observed pharmacokinetics.

Results: The method was robust, with linear relations between the peak area responses and drug concentrations in the range of 2-128 mg/L. The coefficient of variation for precision and the bias for accuracy (both interday and intraday) were less than 10%. Clinical application revealed variable pharmacokinetics of ampicillin in ICU patients (clearance of 0.5-31.2 L/h). TDM-guided dose adjustments achieved good therapeutic drug exposure, with 92.9% of the samples being within the optimal (16-32 mg/L) or quasioptimal (8-48 mg/L) range.

Conclusions: This method provides a practical solution for the routine TDM of ampicillin, facilitating individualized dosing strategies to ensure adequate therapeutic drug exposure. Given its simplicity, cost-effectiveness, and clinical relevance, HPLC-ultraviolet spectrometry holds promise for broad implementation in hospital pharmacies and clinical laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FTD.0000000000001253DOI Listing

Publication Analysis

Top Keywords

therapeutic drug
16
high-performance liquid
8
spectrometry method
8
drug monitoring
8
intensive care
8
tdm ampicillin
8
hplc-ultraviolet spectrometry
8
clinical application
8
icu patients
8
drug exposure
8

Similar Publications

Objective And Significance: Transforming growth factor-beta (TGF-β) plays a pivotal role in breast development by modulating tissue composition during the developmental phase. The TGFβ type II receptor (TGFβ RII) is implicated in breast cancer and represents a valuable therapeutic target. Due to the off-target side effects of many existing TGFβI/TGFβ RII inhibitors, a more targeted approach to drug discovery is necessary.

View Article and Find Full Text PDF

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

Targeting KAT6A/B as a New Therapeutic Strategy for Cancer Therapy.

J Med Chem

January 2025

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.

The lysine acetyltransferase 6A (KAT6A, MOZ, MYST3) is a member of the MYST family of protein acetyltransferases, which are essential for different biological processes such as craniofacial, embryonic, stem cell development, and hematopoiesis. KAT6A is an oncogene in human acute myeloid leukemia (AML), and KAT6A overexpression in AML is associated with metastases and poor prognoses. Furthermore, KAT6A mutations play an important role in cancer formation and progression and result in therapeutic resistance in both hematopoietic malignancies and solid tumors.

View Article and Find Full Text PDF

Isoferulic acid facilitates effective clearance of hypervirulent Klebsiella pneumoniae through targeting capsule.

PLoS Pathog

January 2025

Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.

Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection.

View Article and Find Full Text PDF

Importance: Fall risk and cognitive impairment are prevalent and burdensome in Parkinson disease (PD), requiring efficacious, well-tolerated treatment.

Objective: To evaluate the safety and efficacy of TAK-071, a muscarinic acetylcholine M1 positive allosteric modulator, in participants with PD, increased fall risk, and cognitive impairment.

Design, Setting, And Participants: This phase 2 randomized double-blind placebo-controlled crossover clinical trial was conducted from October 21, 2020, to February 27, 2023, at 19 sites in the US.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!