Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The barocaloric effect of a solid material is an intense research topic due to its potential application in solid-state refrigeration. Among the proposed candidates, elastic polymers are distinctive because their barocaloric responses are independent from a pressure-induced phase transition which makes it possible to realize a broad working temperature range in principle. However, the barocaloric performance of most elastic polymers diminishes significantly as temperature decreases. In this work, giant and reversible barocaloric effects were observed in a broad working temperature range from 252 to 345 K in an amorphous polymer of ethylene propylene diene monomer, which are much higher than the investigated crystalline and partially crystallized ones. It is demonstrated that the degree of crystallinity can be a key factor responsible for the mobility of polymer chains and the corresponding barocaloric performance at low temperatures. The reversible giant barocaloric effects, broad working temperature regions, low cost, and absence of pressure-transmitting fluid make the ethylene propylene diene monomer attractive for solid-state barocaloric refrigeration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c05218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!