A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reversible Giant Barocaloric Effect with Broad Working Temperature Range in an Amorphous Ethylene Propylene Diene Monomer. | LitMetric

The barocaloric effect of a solid material is an intense research topic due to its potential application in solid-state refrigeration. Among the proposed candidates, elastic polymers are distinctive because their barocaloric responses are independent from a pressure-induced phase transition which makes it possible to realize a broad working temperature range in principle. However, the barocaloric performance of most elastic polymers diminishes significantly as temperature decreases. In this work, giant and reversible barocaloric effects were observed in a broad working temperature range from 252 to 345 K in an amorphous polymer of ethylene propylene diene monomer, which are much higher than the investigated crystalline and partially crystallized ones. It is demonstrated that the degree of crystallinity can be a key factor responsible for the mobility of polymer chains and the corresponding barocaloric performance at low temperatures. The reversible giant barocaloric effects, broad working temperature regions, low cost, and absence of pressure-transmitting fluid make the ethylene propylene diene monomer attractive for solid-state barocaloric refrigeration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c05218DOI Listing

Publication Analysis

Top Keywords

broad working
16
working temperature
16
temperature range
12
ethylene propylene
12
propylene diene
12
diene monomer
12
reversible giant
8
barocaloric
8
giant barocaloric
8
elastic polymers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!