Senescent lung-resident mesenchymal stem cells drive pulmonary fibrogenesis through FGF-4/FOXM1 axis.

Stem Cell Res Ther

State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.

Published: September 2024

Background: Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF.

Methods: Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR.

Results: We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis.

Conclusion: These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409797PMC
http://dx.doi.org/10.1186/s13287-024-03866-2DOI Listing

Publication Analysis

Top Keywords

senescent mscs
16
pulmonary fibrosis
12
mesenchymal stem
8
stem cells
8
pulmonary
8
pulmonary fibrogenesis
8
fgf-4/foxm1 axis
8
cellular senescence
8
ipf progression
8
activation pulmonary
8

Similar Publications

In recent years, stem cell therapy has become a pivotal component of regenerative medicine. Stem cells, characterized by their self-renewal capacity and multidirectional differentiation potential, can be isolated from a variety of biological tissues, including adipose tissue, bone marrow, the umbilical cord, and the placenta. The classic applications of stem cells include human pluripotent stem cells (hPSCs) and mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Immortalization of Mesenchymal Stem Cells for Application in Regenerative Medicine and Their Potential Risks of Tumorigenesis.

Int J Mol Sci

December 2024

Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.

Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes.

View Article and Find Full Text PDF

Every 25th death worldwide is associated with liver pathology. The development of novel approaches to liver diseases therapy and protocols for maintaining the vital functions of patients on the liver transplant waiting list are urgently needed. Resident mesenchymal stem cells (MSCs) play a significant role in supporting liver tissue integrity and improve the liver condition after infusion.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are involved in the maintenance and regeneration of a large variety of tissues due to their stemness and multi-lineage differentiation capability. Harnessing these advantageous features, a flurry of clinical trials have focused on MSCs to treat different pathologies, but only few protocols have received regulatory approval so far. Among the various causes hindering MSCs' efficacy is the emergence of cellular senescence, which has been correlated with specific characteristics, such as morphological and epigenetic alterations, DNA damage, ROS production, mitochondrial dysfunction, telomere shortening, non-coding RNAs, loss of proteostasis, and a peculiar senescence-associated secretory phenotype.

View Article and Find Full Text PDF

Anti-Graying Effects of External and Internal Treatments with Luteolin on Hair in Model Mice.

Antioxidants (Basel)

December 2024

Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Little is known about the anti-graying effects of antioxidants on hair. The anti-graying effects of three antioxidants (luteolin, hesperetin, and diosmetin) on hair were investigated according to the sequential processes of hair graying that were previously clarified in model mice [Ednrb(+/-);RET-mice]. External treatment with luteolin, but not that with hesperetin or diosmetin, alleviated hair graying in Ednrb(+/-);RET-mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!