The electron injection and transport behavior are of vital importance to the performance of quantum-dot light-emitting diodes. By simultaneously measuring the electroluminescence-photoluminescence of the quantum-dot light-emitting diodes, we identify the presence of leakage electrons which leads to the discrepancy of the electroluminescence and the photoluminescence roll-off. To trace the transport paths of the leakage electrons, a single photon counting technique is developed. This technique enables us to detect the weak photon signals and thus provides a means to visualize the electron transport paths at different voltages. The results show that, the electrons, except those recombining within the quantum-dots, leak to the hole transport layer or recombine at the hole transport layer/quantum-dot interface, thus leading to the reduction of efficiency. By reducing the amount of leakage electrons, quantum-dot light-emitting diode with an internal power conversion efficiency of over 98% can be achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408697 | PMC |
http://dx.doi.org/10.1038/s41467-024-52521-0 | DOI Listing |
Nano Lett
January 2025
Department of Physics, Umeå University, Linnaeus väg 24, Umeå SE-90187, Sweden.
Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440-470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm.
View Article and Find Full Text PDFAdv Mater
January 2025
National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.
The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.
View Article and Find Full Text PDFAdv Mater
January 2025
Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea.
Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.
View Article and Find Full Text PDFSmall
January 2025
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!