Energy system optimization models offer insights into energy and emissions futures through least-cost optimization. However, real-world energy systems often deviate from deterministic scenarios, necessitating rigorous uncertainty exploration in macro-energy system modeling. This study uses modeling techniques to generate diverse near cost-optimal net-zero CO pathways for the United States' energy system. Our findings reveal consistent trends across these pathways, including rapid expansion of solar and wind power generation, substantial petroleum use reductions, near elimination of coal combustion, and increased end-use electrification. We also observe varying deployment levels for natural gas, hydrogen, direct air capture of CO, and synthetic fuels. Notably, carbon-captured coal and synthetic fuels exhibit high adoption rates but only in select decarbonization pathways. By analyzing technology adoption correlations, we uncover interconnected technologies. These results demonstrate that diverse pathways for decarbonization exist at comparable system-level costs and provide insights into technology portfolios that enable near cost-optimal net-zero CO futures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408608PMC
http://dx.doi.org/10.1038/s41467-024-52433-zDOI Listing

Publication Analysis

Top Keywords

decarbonization pathways
8
energy system
8
cost-optimal net-zero
8
synthetic fuels
8
pathways
5
diverse decarbonization
4
pathways cost-optimal
4
cost-optimal futures
4
energy
4
futures energy
4

Similar Publications

Recent studies outline markedly different possible decarbonization pathways for civil aviation by 2050. This paper examines how the key assumptions retained in these scenarios (i.e.

View Article and Find Full Text PDF

Reducing transition costs towards carbon neutrality of China's coal power plants.

Nat Commun

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, China.

Article Synopsis
  • The study examines various pathways for transitioning coal power that can achieve the same carbon emission reduction targets, focusing on costs associated with different mitigation technologies.
  • By using a dynamic optimization model for over 4,200 coal plants in China, the research finds that plants can retrofit multiple technologies, retiring at lower costs while enhancing grid stability.
  • Optimizing these transition pathways could save China over $700 billion or increase emissions reductions substantially without extra expenses, aiding in a cost-effective phase-out of coal and supporting carbon neutrality goals.
View Article and Find Full Text PDF

The growing concern on global warming has pushed to set ambitious targets of carbon neutrality or net zero at the water sector. Meanwhile, poor data availability has been reported to restrict the national assessment of climate impacts and mitigation strategies in water sector. In national greenhouse gas (GHG) inventories, water sector is embedded in other sectors' emissions making it difficult to monitor separately.

View Article and Find Full Text PDF

The development of sustainable aviation fuels (SAFs) is a must for the decarbonization of the aviation industry. This paper explores various pathways for SAF production, focusing on innovative catalytic processes for the utilization of CO as a potential feedstock. Key pathways analyzed include the Modified Fischer-Tropsch Synthesis (MFTS), methanol synthesis, and subsequent transformations of methanol into hydrocarbons (MTH), aromatics (MTA) and olefin oligomerization.

View Article and Find Full Text PDF

Advances in fundamentals and application of plasmon-assisted CO photoreduction.

Nanophotonics

February 2024

School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia.

Article Synopsis
  • Artificial photosynthesis using carbon dioxide (CO) could play a key role in creating renewable fuels and meeting global decarbonization goals, but converting CO is complex due to its chemical stability.
  • Recent research shows plasmonic nanoparticles can direct reactions and improve efficiency in producing hydrocarbons from CO, though practical applications are still limited.
  • This review outlines recent advancements in plasmon-enhanced CO photoreduction, discusses ongoing debates in the field, and offers insight into future research directions and challenges for improving photocatalysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!