Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Ultrasound imaging has emerged as a promising cost-effective and portable non-irradiant modality for the diagnosis and follow-up of diseases. Motion analysis can be performed by segmenting anatomical structures of interest before tracking them over time. However, doing so in a robust way is challenging as ultrasound images often display a low contrast and blurry boundaries.
Methods: In this paper, a robust descriptor inspired from the fractal dimension is presented to locally characterize the gray-level variations of an image. This descriptor is an adaptive grid pattern whose scale locally varies as the gray-level variations of the image. Robust features are then located based on the gray-level variations, which are more likely to be consistently tracked over time despite the presence of noise.
Results: The method was validated on three datasets: segmentation of the left ventricle on simulated echocardiography (Dice coefficient, DC), accuracy of diaphragm motion tracking for healthy subjects (mean sum of distances, MSD) and for a scoliosis patient (root mean square error, RMSE). Results show that the method segments the left ventricle accurately ( ) and robustly tracks the diaphragm motion for healthy subjects ( mm) and for the scoliosis patient ( mm).
Conclusions: This method has the potential to segment structures of interest according to their texture in an unsupervised fashion, as well as to help analyze the deformation of tissues. Possible applications are not limited to US image. The same principle could also be applied to other medical imaging modalities such as MRI or CT scans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-024-03249-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!