Active pharmaceutical contaminants in drinking water: myth or fact?

Daru

Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.

Published: December 2024

Global water availability has been affected by a variety of factors, including climate change, water pollution, urbanization, and population growth. These issues have been particularly acute in many parts of the world, where access to clean water remains a significant challenge. In this context, preserving existing water bodies is a critical priority. Numerous studies have demonstrated the inadequacy of conventional water treatment processes in removing active pharmaceutical ingredients (APIs) from the water. These pharmaceutical active compounds have been detected in treated wastewater, groundwater, and even drinking water sources. The presence of APIs in water resources poses a significant threat not only to aquatic organisms but also to human health. These emerging contaminants have the potential to disrupt endocrine systems, promote the development of antibiotic-resistant bacteria, and bioaccumulate in the food chain, ultimately leading to unacceptable risks to public health. The inability of current conventional treatment methods to effectively remove APIs from water has raised serious concerns about the safety and reliability of water supplies. This issue requires immediate attention and the development of more effective treatment technologies to safeguard the quality of water resources and protect both aquatic ecosystems and human health. Other treatment methods, such as nanotechnology, microalgal treatment, and reverse osmosis, are promising in addressing the issue of API contamination in water resources. These innovative approaches have demonstrated higher removal efficiencies for a wide range of APIs compared to conventional methods, such as activated sludge and chlorination, which have been found to be inadequate in the removal of these emerging contaminants. The potential of these alternative treatment technologies to serve as effective tertiary treatment. To address this critical challenge, governments and policymakers should prioritize investment in research and development to establish effective and scalable solutions for eliminating APIs from various water sources. This should include comprehensive studies to assess the performance, cost-effectiveness, and environmental sustainability of emerging treatment technologies. The emerging contaminants should be included in robust water quality monitoring programs (Aus der Beek et al. in Environ Toxicol Chem 2016;35(4):823-835), with strict regulatory limits enforced to protect public health and the environment. By doing so, the scientific community and regulatory authorities can work together to develop a multi-barrier approach to safeguarding the water resources and ensuring access to safe, clean water for all. This review explores the potential of alternative treatment technologies to serve as viable solutions in the fight against API contamination. Innovative approaches, including nanotechnology, microalgal treatment, and reverse osmosis, have demonstrated remarkable success in addressing this challenge, exhibiting higher removal efficiencies compared to traditional methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554600PMC
http://dx.doi.org/10.1007/s40199-024-00536-9DOI Listing

Publication Analysis

Top Keywords

water
17
apis water
16
water resources
16
treatment technologies
16
emerging contaminants
12
treatment
10
active pharmaceutical
8
drinking water
8
clean water
8
water sources
8

Similar Publications

Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.

View Article and Find Full Text PDF

To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.

View Article and Find Full Text PDF

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process.

Water Res

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.

View Article and Find Full Text PDF

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!