Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that plays a pivotal role in pain generation after exposure to irritant chemicals and is involved in the sensation of a wide variety of pathological pain. TRPA1 was first reported to be sensitive to noxious cold, but its intrinsic cold sensitivity still remains under debate. To address this issue, we focused on cold hypersensitivity induced by oxaliplatin, a platinum-based chemotherapeutic drug, as a peculiar adverse symptom of acute peripheral neuropathy. We and other groups have shown that oxaliplatin enhances TRPA1 sensitivity to its chemical agonists and reactive oxygen species (ROS). Our in vitro and animal model studies revealed that oxaliplatin, or its metabolite oxalate, inhibits hydroxylation of a proline residue within the N-terminus of human TRPA1 (hTRPA1) via inhibition of prolyl hydroxylase domain-containing protein (PHD), which induces TRPA1 sensitization to ROS. Although hTRPA1 is insensitive to cold, PHD inhibition endows hTRPA1 with cold sensitivity through sensing the small amount of ROS produced after exposure to cold. Hence, we propose that PHD inhibition can unveil the cold sensitivity of hTRPA1 by converting ROS signaling into cold sensitivity. Furthermore, in this review, we summarize the role of TRPA1 in painful cold hypersensitivity during peripheral vascular impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-97-4584-5_17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!