Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176285 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!