Association of Vascular Risk Factors and Cerebrovascular Pathology With Alzheimer Disease Pathologic Changes in Individuals Without Dementia.

Neurology

From the Department of Radiology and Nuclear Medicine (L.L., S.I., L.E.C., M.T., A.M.W., F.B.), Amsterdam University Medical Centre, Vrije Universiteit; Amsterdam Neuroscience (L.L., S.I., L.E.C., A.M.W., H.M.), Brain Imaging, Amsterdam, The Netherlands; Department of Neurology and Laboratory of Neuroscience (A.M., F.V., N.T., V.S.), IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Radiology (S.I.), Copenhagen University Hospital Rigshospitalet; Cerebriu A/S (S.I.), Copenhagen, Denmark; Clinical Memory Research Unit (L.E.C.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Advanced Biomedical Sciences (M.T.), University "Federico II," Naples, Italy; Department of Psychiatry and Neurochemistry (K.B., C.H.S.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburgn; Clinical Neurochemistry Laboratory (K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Neuroradiology Department (C.D.P.), University Hospital of Coventry and Warwickshire (UHCW), Coventry; GE HealthCare (C.F.), Amersham; Dementia Research Centre (N.C.F.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute at University College London (N.C.F.), United Kingdom; Laboratory Alzheimer's Neuroimaging and Epidemiology (G.B.F.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; University Hospitals and University of Geneva (G.B.F.); CIMC - Centre d'Imagerie Médicale de Cornavin (S.H.), Place de Cornavin 18, Genève, Switzerland; Department of Surgical Sciences (S.H.), Radiology, Uppsala University, Sweden; Department of Radiology (S.H.), Beijing Tiantan Hospital, Capital Medical University, P. R. China; Centro de Investigación y Terapias Avanzadas (P.M.-L.), Neurología, CITA-Alzheimer Foundation, San Sebastián, Spain; Centre for Clinical Brain Sciences (D.M., A.W., J.M.W.), The University of Edinburgh; Department of Psychiatry (J.O.B.), School of Clinical Medicine, CB2 0SP, University of Cambridge, United Kingdom; Department of Nuclear Medicine (P.P.), Toulouse University Hospital; ToNIC (P.P.), Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France; Edinburgh Dementia Prevention (C.R.), Centre for Clinical Brain Sciences, Outpatient Department 2, Western General Hospital, University of Edinburgh Brain Health Scotland (C.R.), Edinburgh, United Kingdom; Alzheimer Center Amsterdam (P.S., B.M.T., P.J.V.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.S., B.M.T., P.J.V.), Neurodegeneration, Amsterdam, The Netherlands; Takeda Pharmaceuticals Ltd. (A.J.S.), Cambridge, MA; Department of Medical Physics and Biomedical Engineering (C.H.S.), Centre for Medical Image Computing (CMIC), University College London (UCL); MRC Unit for Lifelong Health & Ageing at UCL (C.H.S.), University College London; School of Biomedical Engineering and Imaging Sciences (C.H.S.), King's College London, United Kingdom; Department of Pathophysiology and Transplantation (F.V., N.T., V.S.), "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Alzheimer Center Limburg (P.J.V.), Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, 6229 GS, Maastricht University, The Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Medicine (A.W.), Imperial College London; IXICO (R.W.), EC1A 9PN, London, United Kingdom; Université de Normandie (G.C.), Unicaen, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", institut Blood-and-Brain @ Caen-Normandie, Cyceron, Caen, France; German Center for Neurodegenerative Diseases (DZNE) (M.E.), Munich, Germany; Ghent Institute for Functional and Metabolic Imaging (GIfMI) (H.M.), Ghent University, Belgium; Barcelonaβeta Brain Research Center (BBRC) (J.D.G.), Pasqual Maragall Foundation; CIBER Bioingeniería (J.D.G.), Biomateriales y Nanomedicina (CIBER-BBN), Madrid; IMIM (Hospital del Mar Medical Research Institute) (J.D.G.); Universitat Pompeu Fabra (J.D.G.), Barcelona, Spain; UK Dementia Research Institute Centre at the University of Edinburgh (J.M.W.); and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom.

Published: October 2024

Background And Objectives: Vascular risk factors (VRFs) and cerebral small vessel disease (cSVD) are common in patients with Alzheimer disease (AD). It remains unclear whether this coexistence reflects shared risk factors or a mechanistic relationship and whether vascular and amyloid pathologies have independent or synergistic influence on subsequent AD pathophysiology in preclinical stages. We investigated links between VRFs, cSVD, and amyloid levels (Aβ) and their combined effect on downstream AD biomarkers, that is, CSF hyperphosphorylated tau (P-tau), atrophy, and cognition.

Methods: This retrospective study included nondemented participants (Clinical Dementia Rating < 1) from the European Prevention of Alzheimer's Dementia (EPAD) cohort and assessed VRFs with the Framingham risk score (FRS) and cSVD features on MRI using visual scales and white matter hyperintensity volumes. After preliminary linear analysis, we used structural equation modeling (SEM) to create a "cSVD severity" latent variable and assess the direct and indirect effects of FRS and cSVD severity on Aβ, P-tau, gray matter volume (baseline and longitudinal), and cognitive performance (baseline and longitudinal).

Results: A total cohort of 1,592 participants were evaluated (mean age = 65.5 ± 7.4 years; 56.16% F). We observed positive associations between FRS and all cSVD features (all < 0.05) and a negative association between FRS and Aβ (β = -0.04 ± 0.01). All cSVD features were negatively associated with CSF Aβ (all < 0.05). Using SEM, the cSVD severity fully mediated the association between FRS and CSF Aβ (indirect effect: β = -0.03 ± 0.01), also when omitting vascular amyloid-related markers. We observed a significant indirect effect of cSVD severity on P-tau (indirect effect: β = 0.12 ± 0.03), baseline and longitudinal gray matter volume (indirect effect: β = -0.10 ± 0.03; β = -0.12 ± 0.05), and baseline cognitive performance (indirect effect: β = -0.16 ± 0.03) through CSF Aβ.

Discussion: In a large nondemented population, our findings suggest that cSVD is a mediator of the relationship between VRFs and CSF Aβ and affects downstream neurodegeneration and cognitive impairment. We provide evidence of VRFs indirectly affecting the pathogenesis of AD, highlighting the importance of considering cSVD burden in memory clinics for AD risk evaluation and as an early window for intervention. These results stress the role of VRFs and cerebrovascular pathology as key biomarkers for accurate design of anti-amyloid clinical trials and offer new perspectives for patient stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450612PMC
http://dx.doi.org/10.1212/WNL.0000000000209801DOI Listing

Publication Analysis

Top Keywords

risk factors
12
frs csvd
12
csvd features
12
csvd severity
12
csf aβ
12
csvd
10
vascular risk
8
cerebrovascular pathology
8
alzheimer disease
8
gray matter
8

Similar Publications

Background: This study investigated the clinical efficacy and prognostic factors of ablative treatment in hepatocellular carcinoma (HCC) patients with and without diabetes mellitus (DM).

Methods: Retrospective data were collected from HCC patients who underwent ablation between January 2016 and December 2019. The baseline clinicopathological characteristics and long-term outcomes, such as overall survival (OS) and recurrence-free survival (RFS), were compared between those with and without DM.

View Article and Find Full Text PDF

Purpose: To evaluate the risk factors that may delay enhanced recovery in the ablation of liver tumors.

Methods: A total of 310 patients who underwent ultrasound-guided ablation of liver tumors under general anesthesia were prospectively enrolled. Baseline data, intraoperative parameters, and postoperative events were evaluated.

View Article and Find Full Text PDF

Objective: This retrospective study aimed to determine the need for lymph node resection during surgical treatment in patients with stage IA non-small-cell lung cancer (NSCLC).

Materials And Methods: A total of 1428 patients diagnosed with cT1N0M0 1 A stage NSCLC who underwent surgery were divided into two groups: lymphadenectomy (n = 1324) and nonlymphadenectomy (n = 104). The effects of lymph node resection on overall survival (OS) and recurrence-free survival (RFS) and on clinicopathological factors that affected the prognosis of the patients were investigated.

View Article and Find Full Text PDF

Importance: Data characterizing the severity and changing prevalence of bone mineral density (BMD) deficits and associated nonfracture consequences among childhood cancer survivors decades after treatment are lacking.

Objective: To evaluate risk for moderate and severe BMD deficits in survivors and to identify long-term consequences of BMD deficits.

Design, Setting, And Participants: This cohort study used cross-sectional and longitudinal data from the St Jude Lifetime (SJLIFE) cohort, a retrospectively constructed cohort with prospective follow-up.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!