As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in , but the mechanism underlying this remains poorly understood. Here, we found that loss of function of , a homolog of rice, leads to chlorophyllous embryo, indicating that plays an opposite role in Chl biosynthesis in rice compared with that in . OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407766 | PMC |
http://dx.doi.org/10.7554/eLife.96553 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!