A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Convolutional Framework for Color Constancy. | LitMetric

A Convolutional Framework for Color Constancy.

IEEE Trans Neural Netw Learn Syst

Published: September 2024

We introduce a convolutional framework (CF) for computational color constancy, building upon the established low-level image feature-based framework, which utilized simple image statistics for illuminant estimation. Our framework expands upon this through an end-to-end learnable neural architecture. This adaptation enables the learning and usage of advanced filters that are not restricted to Gaussian kernels operating on individual color channels, thus generalizing the capabilities of the original framework. Additionally, our general framework supports deeper convolutional architectures, thus increasing its computational power. It can also be efficiently applied to estimate multiple spatially varying illuminants within a single scene. Our experimental results on standard datasets demonstrate that the CF outperforms the best methods in the low-level framework, improving the illuminant estimation accuracy by up to 34% for single illuminant estimation and 30% for multiple illuminants estimation. Additionally, our framework exhibits superior performance even when the number of training images is reduced. Finally, we document the inference speedup of our implementation reaching up to 30 × , making the CF especially suitable for applications where efficiency is critical. Source code and trained models available at: https://github.com/MarcoBauzz/convolutional-color-constancy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3454484DOI Listing

Publication Analysis

Top Keywords

illuminant estimation
12
convolutional framework
8
color constancy
8
framework
7
framework color
4
constancy introduce
4
introduce convolutional
4
framework computational
4
computational color
4
constancy building
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!