Limosilactobacillus reuteri is a probiotic microorganism used in the treatment of gastrointestinal disorders. The effect of oxygen transfer on cultures of L. reuteri ATCC 53608 at shake flask and stirred tank bioreactor scales was studied, using MRS and molasses-based media. At shake flask scale, in MRS medium, a maximum bacterial concentration of 2.01 ± 0.02 g L was obtained; the oxygen transfer coefficient was 2.01 ± 0.04 h. Similarly, in a 7.5 L bioreactor, in MRS, a maximum bacterial concentration of 2.46 ± 0.16 g L was achieved (ka = 2.64 ± 0.06 h). In contrast, using a molasses-based medium, bacterial concentration reached 3.13 ± 0.17 g L in the 7.5 L bioreactor. A progressive reduction in lactic acid concentration and yield was observed as the oxygen transfer coefficient increased, at shake flask scale. Also, the oxygen transfer coefficient strongly affected the growth of L. reuteri in shake flask and bioreactor and allowed us to successfully scale up L. reuteri culture, producing similar maximum bacterial concentrations in both scales (2.01 g L and 2.46 g L in MRS). This is the first study on oxygen transfer coefficients in L. reuteri, and it is a valuable contribution to the field as it provides important insights about how this organism tolerates oxygen and adapts its metabolism for larger biomass production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408571PMC
http://dx.doi.org/10.1007/s00284-024-03822-6DOI Listing

Publication Analysis

Top Keywords

oxygen transfer
24
shake flask
16
maximum bacterial
12
bacterial concentration
12
transfer coefficient
12
limosilactobacillus reuteri
8
reuteri atcc
8
atcc 53608
8
flask scale
8
75 l bioreactor
8

Similar Publications

Frozen versus fresh embryo transfer in women with low prognosis for in vitro fertilisation treatment: pragmatic, multicentre, randomised controlled trial.

BMJ

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Centre for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China

Objective: To test the hypothesis that a freeze-all strategy would increase the chance of live birth compared with fresh embryo transfer in women with low prognosis for in vitro fertilisation (IVF) treatment.

Design: Pragmatic, multicentre, randomised controlled trial.

Setting: Nine academic fertility centres in China.

View Article and Find Full Text PDF

Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification.

J Lipid Res

January 2025

Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:

The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.

View Article and Find Full Text PDF

Enhancing single-stage partial nitritation-anammox process with airlift inner-circulation and oxygen partition: a novel strategy for treating high-strength ammonium wastewater.

Environ Res

January 2025

School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China. Electronic address:

In the single-stage partial nitritation-anammox process for high-ammonium wastewater treatment, the presence of sufficient biomass with high activity is essential. This study developed an innovative airlift inner-circulation partition bioreactor (AIPBR) with a dual-cylinder structure. During the 362 days' operation, the AIPBR exhibited robust and stable nitrogen removal performance under diverse influent ammonium spanning from 300 to 1800 mg N/L.

View Article and Find Full Text PDF

General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:

The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.

View Article and Find Full Text PDF

Unveiling heterointerface activation effects with different titanium dioxide crystal phases for electrocatalytic nitrate-to-ammonia reduction.

J Hazard Mater

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:

Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!