Atherosclerosis is a primary cause of cardiovascular and cerebrovascular diseases, with the unpredictable rupture of vulnerable atherosclerotic plaques enriched with lipid-laden macrophages being able to lead to heart attacks and strokes. Activating macrophage autophagy presents itself as a promising strategy for preventing vulnerable plaque formation and reducing the risk of rupture. In this study, we have developed a novel metal-free nanozyme (HCN@DS) that integrates the functions of multimodal imaging-guided therapy for atherosclerosis. HCN@DS has demonstrated high macrophage-targeting abilities due to its affinity toward scavenger receptor A (SR-A), along with excellent photoacoustic and photothermal imaging capabilities for guiding the precise treatment. It combines mild photothermal effects with moderate reactive oxygen species (ROS) generation to treat atherosclerosis. This controlled approach activates autophagy in atherosclerotic macrophages, inhibiting foam cell formation by reducing the uptake of oxidized low-density lipoproteins (oxLDL) and promoting efferocytosis and cholesterol efflux in macrophages. Additionally, it prevents plaque rupture by inhibiting apoptosis and inflammation within the plaque. Therefore, this metal-free nanozyme holds great potential for reducing the risk of atherosclerosis due to its high biosafety, excellent targeting ability, dual-modality imaging capability, and appropriate modulation of autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450685 | PMC |
http://dx.doi.org/10.1021/acsami.4c08671 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
Atherosclerosis is a primary cause of cardiovascular and cerebrovascular diseases, with the unpredictable rupture of vulnerable atherosclerotic plaques enriched with lipid-laden macrophages being able to lead to heart attacks and strokes. Activating macrophage autophagy presents itself as a promising strategy for preventing vulnerable plaque formation and reducing the risk of rupture. In this study, we have developed a novel metal-free nanozyme (HCN@DS) that integrates the functions of multimodal imaging-guided therapy for atherosclerosis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, University of Jinan, Jinan 250022, China. Electronic address:
Metal-free carbon-based nanozymes often exhibit superior chemical stability and detection reliability compared to their metal-doped counterparts. However, their catalytic activity remains an area ripe for further enhancement. Herein, we successfully prepared a chlorine (Cl)-modified, metal-free, and porous N-doped carbon nanozyme (Cl-pNC) via NaCl molten etching.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2024
Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510275, China.
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap.
View Article and Find Full Text PDFJ Mater Chem B
May 2024
Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
Development of metal-free nanozymes has raised concern for their extensive applications in photocatalysis and sensing fields. As novel metal-free nanomaterials, covalent organic frameworks (COFs) have engendered intense interest in the construction of nanozymes due to their structural controllability and molecular functionality. The formation of the molecular arrangement by embedding orderly donor-acceptors (D-A) linked in the framework topology to modulate material properties for highly efficient enzyme mimicking activity is of importance but challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2024
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia.
Ammonia borane (AB) with 19.6 wt % H content is widely considered a safe and efficient medium for H storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!