A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting prospective therapeutic targets of Bombyx batryticatus for managing diabetic kidney disease through network pharmacology analysis. | LitMetric

We conducted network pharmacology and molecular docking analyses, and executed in vitro experiments to assess the mechanisms and prospective targets associated with the bioactive components of Bombyx batryticatus in the treatment of diabetic kidney disease (DKD). The bioactive components and potential targets of B batryticatus were sourced from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Using 5 disease databases, we conducted a comprehensive screening of potential disease targets specifically associated with DKD. Common targets shared between the bioactive components and disease targets were identified through the use of the R package, and subsequently, a protein-protein interaction network was established using data from the STRING database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses pertaining to the identified common targets were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking simulations involving the bioactive components and their corresponding targets were modeled through AutoDock Vina and Pymol. Finally, to corroborate and validate these findings, experimental assays at the cellular level were conducted. Six bioactive compounds and 142 associated targets were identified for B batryticatus. Among the 796 disease targets associated with DKD, 56 targets were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed the involvement of these shared targets in diverse biological processes and signaling pathways, notably the PI3K-Akt signaling pathway. Molecular docking analyses indicated a favorable binding interaction between quercetin, the principal bioactive compound in B batryticatus, and RAC-alpha serine/threonine-protein kinase. Subsequently, in vitro experiments substantiated the inhibitory effect of quercetin on the phosphorylation level of PI3K and Akt. The present study provides theoretical evidence for a comprehensive exploration of the mechanisms and molecular targets by which B batryticatus imparts protective effects against DKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404872PMC
http://dx.doi.org/10.1097/MD.0000000000039598DOI Listing

Publication Analysis

Top Keywords

bioactive components
16
targets
13
molecular docking
12
targets associated
12
disease targets
12
targets identified
12
bombyx batryticatus
8
diabetic kidney
8
kidney disease
8
network pharmacology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!