The large surface area, excellent thermal stability and easy modification make microporous organic networks (MONs) good candidates in the field of gas chromatography (GC). Due to the limited species and highly conjugated networks of MONs, their applications are still in infancy and restricted. To accelerate their developments and to enrich their types in GC, here we report the first example of synthesizing alkyl MON and its capillary column for GC separation of position isomers. Linear 1,8-dibromooctane is used as the alkyl monomer instead of traditional aromatic ones to construct novel alkyl MON to decrease the inherent conjugated characteristic of MONs. The alkyl MON exhibits good thermal stability (up to 350°C), large surface area (1173 m g), and non-polar character, allowing good resolution for alkanes, alkyl benzenes, alcohols, ketones, and diverse position isomers, including dichlorobenzene, trichlorobenzene, bromotoluene, nitrotoluene, methylbenzaldehyde, and ionone with the limits of detection (0.003 mg mL) and limits of quantitation of (0.10 mg mL). The in situ growth-prepared alkyl MON column demonstrates remarkable duration time and precisions for the retention relative standard deviations, (RSDs%, intra-day, n = 7), 0.06%-0.53% (intra-day, n = 7), and 2.87%-10.59% (column-to-column, n = 3). In addition, the fabricated alkyl MON-coated capillary column offers better resolution than three commercial GC columns for the resolution of methylbenzaldehyde, bromotoluene, and chlorotoluene isomers. This work reveals the practicability for synthesizing alkyl MONs and demonstrates their prospects for position isomers separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202400111 | DOI Listing |
Sci Rep
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan.
Free oligosaccharides in human milk have many biological functions for infant health. The reducing end of most human milk oligosaccharides is lactose, and caprine milk was reported to contain oligosaccharides structurally similar to those present in human milk. The structures of oligosaccharides were traditionally determined using nuclear magnetic resonance spectroscopy or enzyme digestion followed by various detection methods, e.
View Article and Find Full Text PDFNanomicro Lett
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
Configurational differences in monosaccharides determine the products and selectivity of the transesterification reaction with lipase-B (CAL-B). The β-anomers of peresterified pyranose monosaccharides tend to yield anomeric deprotection products, while the α-anomers preferentially react at the sixth or fourth position. CAL-B differentiates between enantiomers, either reacting more rapidly with d-enantiomers of monosaccharides or having a different selectivity based on the enantiomer.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
Catalytic alkene isomerization is a powerful synthetic strategy for preparing valuable internal alkenes from simple feedstocks. The utility of olefin isomerization hinges on the ability to control both positional and stereoisomerism to access a single product among numerous potential isomers. Within base-metal catalysis, relatively little is known about how to modulate reactivity and selectivity with group 6 metal-catalyzed isomerization.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
Polyurethane materials, widely used in indoor environments, occasionally exhibit unpleasant odors. An important source of polyurethane odorants is polyether polyols. Previous studies identified odorous 2-ethyldimethyl-1,3,6-trioxocanes in polyurethane materials and polyols but did not investigate the odor activity of the individual isomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!