An impact of an electronic structure or force field method, gas-phase thermodynamic correction, and continuum solvation model on organic carbonate clusters (S) conformational and binding energies is explored. None of the tested force field (GFN-FF, GAFF, MMFF94) and standard semiempirical methods (PM3, AM1, RM1, PM6, PM6-D3, PM6-D3H4, PM7) can reproduce reference RI-SCS-MP2 conformational energies. Tight-binding GFNn-xTB methods provide more realistic conformational energies which are accurate enough to discard the least stable conformers. The effect of thermodynamic correction is moderate and can be ignored if the gas phase conformational stability ranking is a goal. The influence of continuum solvation is stronger, especially if reinforced with the Gibbs free energy thermodynamic correction, and results in the reduced spread of conformational energies. The cluster formation binding energies strongly depend on a particular approach to vibrational thermochemistry with the difference between traditional harmonic and modified scaled rigid - harmonic oscillator approximations reaching 10 kcal mol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.27471DOI Listing

Publication Analysis

Top Keywords

binding energies
12
thermodynamic correction
12
conformational energies
12
electronic structure
8
conformational binding
8
force field
8
continuum solvation
8
conformational
6
energies
6
influence electronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!