The construction of engineered muscle tissues that resemble the function and microstructure of human muscles holds significant promise for various applications, including disease modeling, regenerative medicine, and biological machines. However, current muscle tissue engineering approaches often rely on complex equipment which may limit their accessibility and practicality. Herein, we present a convenient approach using a standard 24-well cell culture plate to construct a platform to facilitate engineered muscle tissues formation and culture. Using this platform, engineered muscle tissue with differentiation characteristics can be manufactured in large quantities. Additionally, the mesenchymal stem cell conditioned medium was utilized to promote the formation and functionality of the engineered muscle tissues. The resulting tissues comprised a higher cell density and a better differentiation effect in the tissues. Taken together, this study provides a simple, convenient, and effective platform for studying muscle tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403061 | PMC |
http://dx.doi.org/10.1016/j.reth.2024.08.011 | DOI Listing |
Discov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFObjectives: The current gold standard for immunofluorescent (IF) visualization of neuromuscular junctions (NMJs) in muscle utilizes frozen tissue sections with fluorescent conjugated antibodies to demarcate neurons and IF alpha-bungarotoxin (α-BTX) to demarcate motor endplates. Frozen tissue sectioning comes with inherent inescapable limitations, including cryosectioning artifact and limited sample shelf-life. However, a parallel approach to identify NMJs in paraffin-embedded tissue sections has not been previously described.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
The Fifth Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
Objective: To investigate the effect of hyperbaric oxygen (HBO) on paroxysmal sympathetic hyperexcitation (PSH) after brain injury.
Methods: A multicenter retrospective study was conducted. Fifty-six patients with PSH who received HBO treatment from four hospitals in Henan Province from January 2021 to September 2023 were selected as the HBO group, and 36 patients with PSH who did not receive HBO treatment from Zhengzhou People's Hospital from May 2018 to December 2020 were selected as the control group.
Aging Cell
January 2025
Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!