A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of the internal loads experienced by proximal phalanx fracture fixations during rehabilitation exercises. | LitMetric

AI Article Synopsis

  • * A new osteosynthesis platform called AdhFix was developed using a light-curable polymer to create a plate-like structure that minimizes soft tissue adhesions, addressing the limitations of metal plates.
  • * A study was conducted using cadaver hands to measure internal loads during rehabilitation exercises, showing that while the internal bending moment in the traditional method was recorded, the AdhFix solution remained intact without failure, indicating promising potential for future use, although more research is needed before clinical implementation.

Article Abstract

Phalangeal fractures are common, particularly in younger patients, leading to a large economic burden due to higher incident rates among patients of working age. In traumatic cases where the fracture may be unstable, plate fixation has grown in popularity due to its greater construct rigidity. However, these metal plates have increased reoperation rates due to inflammation of the surrounding soft tissue. To overcome these challenges, a novel osteosynthesis platform, AdhFix, has been developed. This method uses a light-curable polymer that can be shaped around traditional metal screws to create a plate-like structure that has been shown to not induce soft tissue adhesions. However, to effectively evaluate any novel osteosynthesis device, the biomechanical environment must first be understood. In this study, the internal loads in a phalangeal plate osteosynthesis were measured under simulated rehabilitation exercises. In a human hand cadaver study, a plastic plate with known biomechanical properties was used to fix a 3 mm osteotomy and each finger was fully flexed to mimic traditional rehabilitation exercises. The displacements of the bone fragments were tracked with a stereographic camera system and coupled with specimen specific finite element (FE) models to calculate the internal loads in the osteosynthesis. Following this, AdhFix patches were created and monotonically tested under similar conditions to determine survival of the novel technique. The internal bending moment in the osteosynthesis was 6.78 ± 1.62 Nmm and none of the AdhFix patches failed under the monotonic rehabilitation exercises. This study demonstrates a method to calculate the internal loads on an osteosynthesis device during non-load bearing exercises and that the novel AdhFix solution did not fail under traditional rehabilitation protocols in this controlled setting. Further studies are required prior to clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402699PMC
http://dx.doi.org/10.3389/fbioe.2024.1388399DOI Listing

Publication Analysis

Top Keywords

internal loads
16
rehabilitation exercises
16
soft tissue
8
novel osteosynthesis
8
osteosynthesis device
8
traditional rehabilitation
8
calculate internal
8
loads osteosynthesis
8
adhfix patches
8
osteosynthesis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!