With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404500PMC
http://dx.doi.org/10.2147/DDDT.S469331DOI Listing

Publication Analysis

Top Keywords

anticancer drugs
16
anticancer drugs-induced
12
drugs-induced cardiotoxicity
12
mitochondrial transplantation
12
cardiotoxicity
8
cardiotoxicity anticancer
8
therapeutic measures
8
review will
8
drugs
6
anticancer
6

Similar Publications

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.

View Article and Find Full Text PDF

Head and neck tumors are one of the major diseases that threaten human health. Targeted chemotherapy is an important treatment for head and neck tumors. However, many anti-cancer drugs are difficult to reach effective concentrations in tumors and can cause damage to normal tissues.

View Article and Find Full Text PDF

Deciphering Antigen Processing Machinery (APM) as One of the Determinants for Responsiveness of Affected Patients towards Anticancer Immunotherapy.

Asian Pac J Cancer Prev

December 2024

Research Center for Vaccine and Drugs, The National Research and Innovation Agency (BRIN), South Tangerang 15310, Republic of Indonesia.

Immunotherapy is one of the rising stars in the field of anticancer regiments. Aimed at reinvigorating immune cytotoxicity, this platform is capable of bulking up memory subsets by which protection against tumors is served. The most commonly applied immunotherapy is immune checkpoint inhibitor (ICIs) which received FDA approval for non-small lung cancer (NSLC) in 2014.

View Article and Find Full Text PDF

Background And Objective: Hepatocellular carcinoma (HCC) is recognized as one of the major public health problems and deadly malignancies worldwide. Today, the use of compounds of natural origin in the treatment of cancer and other diseases has been of interest to researchers. Marine compounds such as algae have anti-cancer effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!