Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Emergency response plans for tunnel vehicle accidents are crucial to ensure human safety, protect critical infrastructure, and maintain the smooth operation of transportation networks. However, many decision-support systems for emergency responses still rely significantly on predefined response strategies, which may not be sufficiently flexible to manage unexpected or complex incidents. Moreover, existing systems may lack the ability to effectively respond effectively to the impact different emergency scenarios and responses. In this study, semantic web technologies were used to construct a digital decision-support system for emergency responses to tunnel vehicle accidents. A basic digital framework was developed by analysing the knowledge system of the tunnel emergency response, examining its critical elements and intrinsic relationships, and mapping it to the ontology. In addition, the strategies of previous pre-plans are summarised and transformed into semantic rules. Finally, different accident scenarios were modelled to validate the effectiveness of the developed emergency response system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403512 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!