This study investigates the antibacterial activity and spectral characteristics of Cu-doped ZnO nanoparticles synthesized via the gelatin-based sol-gel method, focusing on their potential biomedical applications. Zn₁₋ₓCuₓO nanoparticles (x = 0.0, 0.01, 0.03, and 0.05) were fabricated using this method. The incorporation of copper dopants into the ZnO matrix significantly influences both the crystalline structure and spectral properties of the nanoparticles. X-ray diffraction analysis confirms the presence of a wurtzite structure without any pyrochlore phase. The broadening of spectral features indicates modifications in lattice parameters and elastic constants. XRD results reveal that adding Cu to the ZnO lattice causes a decrease in crystallite size from 32 to 18 nm. Transmission electron microscopy shows spherical-shaped ZnO nanoparticles with sizes ranging from 30 to 40 nm. Moreover, Cu-doped ZnO nanoparticles exhibit considerable inhibition against bacterial growth. Adding Cu enhances the antibacterial activity of ZnO nanoparticles, suggesting their potential in biomedical applications. Overall, these findings highlight the promising prospects of sol-gel synthesized Cu-doped ZnO nanoparticles in the biomedical field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402975 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e37022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!