A Click Chemistry Strategy Toward Spin-Polarized Transition-Metal Single Site Catalysts for Dynamic Probing of Sulfur Redox Electrocatalysis.

Adv Mater

Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.

Published: November 2024

Catalytic conversion of lithium polysulfides (LiPSs) is a crucial approach to enhance the redox kinetics and suppress the shuttle effect in lithium-sulfur (Li-S) batteries. However, the roles of a typical heterogenous catalyst cannot be easily identified due to its structural complexity. Compared with the distinct sites of single atom catalysts (SACs), each active site of single site catalysts (SSCs) is identical and uniform in their spatial energy, binding mode, and coordination sphere, etc. Benefiting from the well-defined structure, iron phthalocyanine (FePc) is covalently clicked onto CuO nanosheet to prepare low spin-state Fe SSCs as the model catalyst for Li-S electrochemistry. The periodic polarizability evolution of Fe-N bonding is probed during sulfur redox reaction by in situ Raman spectra. Theoretical analysis shows the decreased d-band center gap of Fe (Δd) and delocalization of d/d after the axial click confinement. Consequently, Li-S batteries with Fe SSCs exhibit a capacity decay rate of 0.029% per cycle at 2 C. The universality of this methodological approach is demonstrated by a series of M SSCs (M = Mn, Co, and Ni) with similar variation of electronic configuration. This work provides guidance for the design of efficient electrocatalysis in Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202409369DOI Listing

Publication Analysis

Top Keywords

li-s batteries
12
single site
8
site catalysts
8
sulfur redox
8
click chemistry
4
chemistry strategy
4
strategy spin-polarized
4
spin-polarized transition-metal
4
transition-metal single
4
catalysts dynamic
4

Similar Publications

2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries.

Adv Mater

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.

View Article and Find Full Text PDF

Constructing Accessible Closed Nanopores in Coal-Derived Hard Carbon for Sodium-Ion Batteries.

Small

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.

Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries are promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, the shuttle effect of polysulfides during the charging and discharging processes leads to a rapid decline in capacity, thereby restricting their application in energy storage. The separator, a crucial component of Li-S batteries, facilitates the transport of Li+ ions.

View Article and Find Full Text PDF

Health state assessment method for complex system based on multiexpert joint belief rule base.

Sci Rep

January 2025

School of Computer Science and Information Engineering, Harbin Normal University, Harbin, 150025, China.

The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability.

View Article and Find Full Text PDF

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!