Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.

Download full-text PDF

Source
http://dx.doi.org/10.4103/aja202453DOI Listing

Publication Analysis

Top Keywords

convenient strategy
12
gene knockout
8
knockout mice
8
histone lysine
8
jumonji domain-containing
8
domain-containing protein
8
spermatogenesis
5
strategy functional
4
functional verification
4
verification epigenetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!