Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20133DOI Listing

Publication Analysis

Top Keywords

streamlined screening
8
pachysiphine synthase
8
tabernanthe iboga
8
cytochrome p450
8
tabersonine pseudo-tabersonine
8
enzymes
5
screening platforms
4
platforms lead
4
lead discovery
4
discovery pachysiphine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!