Hypoxia-induced heterogeneity in colorectal cancer (CRC) significantly impacts patient survival by promoting chemoresistance. These conditions alter the regulation of miRNAs, key regulators of crucial processes like proliferation, apoptosis, and invasion, leading to tumor progression. Despite their promising potential as diagnostic and therapeutic targets, the underlying mechanisms by which miRNAs influence hypoxia-mediated tumorigenesis remain largely unexplored. This study aims to elucidate the action of miRNAs in HCT-116 colorectal cancer stem cells (CSCs) under hypoxia, providing valuable insights into their role in tumor adaptation and progression. MiRNA expression was determined using Nanostring nCounter, and bioinformatic analysis was performed to explain the molecular pathway. A total of 50 miRNAs were obtained with an average count of ≥ 20 reads for comparative expression analysis. The results showed that hypoxia-affected 36 oncomiRs were increased in HCT-116, and 14 suppressor-miRs were increased in MSCs. The increase in miRNA expression occurred consistently from normoxia to hypoxia and significantly differed between mesenchymal stem cells (MSCs) and HCT-116. Furthermore, miR-16-5p and miR-29a-3p were dominant in regulating the p53 signaling pathway, which is thought to be related to the escape mechanism against hypoxia and maintaining cell proliferation. More research with a genome-transcriptome axis approach is needed to fully understand miRNAs' role in adapting CRC cells and MSCs to hypoxia. Further research could focus on developing specific biomarkers for diagnosis. In addition, anti-miR can be developed as a therapy to prevent cancer proliferation or inhibit the adaptation of cancer cells to hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.12243DOI Listing

Publication Analysis

Top Keywords

signaling pathway
8
colorectal cancer
8
stem cells
8
mirna expression
8
cells mscs
8
cancer
5
hypoxia
5
predictive action
4
action oncomir
4
oncomir suppressing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!