Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal medical image segmentation. However, its reliance on interactive prompts may restrict its applicability under specific conditions. To address this limitation, we introduce SAM-AutoMed, which achieves automatic segmentation of medical images by replacing the original prompt encoder with an improved MobileNet v3 backbone. The performance on multiple datasets surpasses both SAM and SAM-Med2D. Current enhancements on the Large Visual Model SAM lack applications in the field of medical image classification. Therefore, we introduce SAM-MedCls, which combines the encoder of SAM-Med2D with our designed attention modules to construct an end-to-end medical image classification model. It performs well on datasets of various modalities, even achieving state-of-the-art results, indicating its potential to become a universal model for medical image classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403950PMC
http://dx.doi.org/10.1186/s12880-024-01401-6DOI Listing

Publication Analysis

Top Keywords

medical image
24
image classification
12
medical
8
image segmentation
8
large visual
8
visual model
8
model sam
8
image
5
model
5
image analysis
4

Similar Publications

Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.

View Article and Find Full Text PDF

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

Objective: To examine the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) with Sonazoid (Sonazoid-CEUS) for endometrial lesions.

Methods: In this prospective and multicenter study, data were collected from 84 patients with endometrial lesions from 11 hospitals in China. All the patients received a conventional US and Sonazoid-CEUS examination.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

Proteomic patterns associated with ketamine response in major depressive disorders.

Cell Biol Toxicol

January 2025

Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.

Background: Major depressive disorder (MDD) is characterized by persistent feelings of sadness and loss of interest. Ketamine has been widely used to treat MDD owing to its rapid effect in relieving depressive symptoms. Importantly, not all patients respond to ketamine treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!