AI Article Synopsis

  • Proximity effects in thin ferromagnetic films enable unique adjustments in magnetic properties when they are in contact, influencing their magnetic interactions at the interface.
  • By studying combinations of low-rare-earth ferromagnets and 3d transition metals, researchers can achieve room-temperature magnetism, especially in materials like europium monoxide (EuO) without altering their core properties.
  • Hard X-ray photoelectron spectroscopy techniques reveal that the thickness of the EuO layer significantly impacts its magnetic coupling, demonstrating that this effect is a short-range phenomenon that enhances magnetic order, particularly in lower dimensions, making it valuable for spin-based technologies.

Article Abstract

Proximity effects allow for the adjustment of magnetic properties in a physically elegant way. If two thin ferromagnetic (FM) films are brought into contact, electronic coupling alters their magnetic exchange interaction at their interface. For a low-  rare-earth FM coupled to a 3d transition metal FM, even room temperature magnetism is within reach. In addition, magnetic proximity coupling is particularly promising for increasing the magnetic order of metastable materials such as europium monoxide (EuO) beyond their bulk , since neither the stoichiometry nor the insulating properties are modified. We investigate the magnetic proximity effect at Fe/EuO and Co/EuO interfaces using hard X-ray photoelectron spectroscopy. By exciting the FM layers with circularly polarized light, magnetic dichroism is observed in angular dependence on the photoemission geometry. In this way, the depth-dependence of the magnetic signal is determined element-specifically for the EuO and 3d FM parts of the bilayers. In connection with atomistic spin dynamics simulations, the thickness of the EuO layer is found to be crucial, indicating that the observed antiferromagnetic proximity coupling is a short-ranged and genuine interface phenomenon. This fact turns the bilayer into a strong synthetic ferrimagnet. The increase in magnetic order in EuO occurs in a finite spatial range and is therefore particularly strong in the 2D limit-a counterintuitive but very useful phenomenon for spin-based device applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405716PMC
http://dx.doi.org/10.1038/s41598-024-70548-7DOI Listing

Publication Analysis

Top Keywords

proximity coupling
12
magnetic order
12
magnetic
9
magnetic proximity
8
proximity
5
coupling induced
4
induced dimensional
4
dimensional magnetic
4
order euo-based
4
euo-based synthetic
4

Similar Publications

Dendritic cells (DCs) are promising targets for cancer immunotherapies because of their central role in the initiation and control of immune responses. The rare cDC1 population is of particular interest because of its remarkable ability to cross-present antigens (Ag) to CD8+ T cells, to promote Th1 cell polarization and NK cell activation and recruitment. However, the spatial organization and specific functions of cDC1s in response to immunotherapy remain to be clearly characterized in human tumors.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of latent tuberculosis infection (LTBI) are crucial for tuberculosis (TB) control. Household contacts (HHC) of patients with pulmonary TB are at a high risk of LTBI due to their close proximity to source cases.

Objective: To describe the diagnosis and treatment of LTBI among HHC.

View Article and Find Full Text PDF

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by inference, its extent of diagenetic alteration, using quantitative, semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) observations (optical images and scanning electron microscope) with minor, trace and rare earth element (REE) compositions (EDS, maps and REE profiles), as a tool for assessing diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. Tissue-selective REE values have been obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicating areas of potential REE enrichment, combined with cathodoluminescence (CL) analysis.

View Article and Find Full Text PDF

Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!