Here, we report a modular multicellular system created by mixing and matching discrete engineered bacterial cells. This system can be designed to solve multiple computational decision problems. The modular system is based on a set of engineered bacteria that are modeled as an 'artificial neurosynapse' that, in a coculture, formed a single-layer artificial neural network-type architecture that can perform computational tasks. As a demonstration, we constructed devices that function as a full subtractor and a full adder. The system is also capable of solving problems such as determining if a number between 0 and 9 is a prime number and if a letter between A and L is a vowel. Finally, we built a system that determines the maximum number of pieces of a pie that can be made for a given number of straight cuts. This work may have importance in biocomputer technology development and multicellular synthetic biology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41589-024-01711-4DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural network-type
8
system
5
multicellular artificial
4
network-type architectures
4
architectures demonstrate
4
demonstrate computational
4
computational problem
4
problem solving
4
solving report
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!