Concrete, as a cornerstone of modern construction, heavily relies on the quality of its constituent materials, particularly aggregates. Among the critical factors contributing to high-quality concrete are proper gradation, absence of clay particles, and angular shape of aggregates. Adhering to these standards typically results in concrete with superior strength. However, aggregates sourced from riverbeds often possess a natural gradation, contain clay particles, and have rounded shapes. This study delves into a comparative analysis of aggregates sourced from two widely utilized riverbed regions, namely Hari-River and Kamar-Kalaq, situated within Herat province, Afghanistan. Given that over 90% of concrete in Herat province is sourced from these two riverbeds, the findings of this study carry immense significance. The research meticulously examines key parameters, including clay content, gradation, aggregate shape, and compressive strength, to determine the optimal choice for concrete production. Methodologically, samples were acquired following ASTM standards, and rigorous testing procedures were conducted, encompassing clay particle analysis, sieve analysis, and strength testing. The results reveal significant disparities between the two regions, with Hari-River demonstrating superior characteristics across various metrics. Particularly noteworthy is Hari-River's lower clay content of 2.7% compared to Kamar-Kalaq's 3.7%. The gradation of Hari-River for both coarse and fine aggregates is superior to that of Kamar-Kalaq when compared to size 67 aggregate range. Additionally, the average 28 days concrete compressive strength of Hari-River aggregates is 27.8 MPa, while that of Kamar-Kalaq is 23.4 MPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405845PMC
http://dx.doi.org/10.1038/s41598-024-71508-xDOI Listing

Publication Analysis

Top Keywords

concrete
8
concrete mix
8
hari-river kamar-kalaq
8
clay particles
8
aggregates sourced
8
sourced riverbeds
8
regions hari-river
8
herat province
8
clay content
8
compressive strength
8

Similar Publications

Prolonged incubation time unwarranted for acute periprosthetic joint infections.

J Clin Microbiol

January 2025

Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, the Netherlands.

Unlabelled: Current laboratory protocols for periprosthetic joint infections (PJIs) involve a standard 10- to 14-day incubation period. However, recent evidence indicates considerable variability in the time to diagnosis (TTD) between acute and chronic PJIs. TTD is also influenced by the employed culture media and sample types.

View Article and Find Full Text PDF

Nowadays, Egypt is treating the Nile River Water to produce drinking water, and this process generates large amounts of waste, around 635 million m annually, which is called water treatment plant sludge (WTPS). This WTPS cost the government around 30 million US dollars to return it back to the Nile River in addition to negatively affecting the environment. Therefore, there is an urgent need to find environmentally friendly alternatives that reduce the impact of such an issue.

View Article and Find Full Text PDF

Concrete compressive strength is a critical parameter in construction and structural engineering. Destructive experimental methods that offer a reliable approach to obtaining this property involve time-consuming procedures. Recent advancements in artificial neural networks (ANNs) have shown promise in simplifying this task by estimating it with high accuracy.

View Article and Find Full Text PDF

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

To mitigate global warming, replacing concrete and steel with timber as the primary construction material for construction projects, such as check dams, is being promoted in Japan and other countries. Timber check dams have more limited installation sites than concrete or steel dams because of installation conditions such as locations less susceptible to debris flows and locations where there is constant running water. However, even when the installation conditions are met, engineers and contractors are reluctant to select timber as a construction material because of its high construction cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!