AI Article Synopsis

  • Neoadjuvant radiotherapy is the standard treatment for locally advanced rectal cancer, but its effectiveness varies among patients, prompting the need for personalized treatment approaches based on molecular signatures.
  • The study aimed to develop and validate a genome-based model (GARD) for determining radiation doses in these patients by analyzing gene expression from tumors collected from 64 patients undergoing treatment between 2015 and 2018.
  • Results indicated significant differences in treatment response, with a median NAR score of 8.43 demonstrating the variability in clinical efficacy among patients with similar tumor stages, highlighting the potential for tailored radiation therapy.

Article Abstract

Neoadjuvant radiotherapy is the standard care of locally advanced rectal cancer. Although a majority of patients received the same dose, the curative efficacy varies among individuals. In recent years, cancer treatment has entered the era of precise medical care, and how to identify patients for proper treatment by molecular signature is an important path of individualized therapy. This study aimed to establish and validate a genome-based model for adjusting radiation dose (GARD) for Chinese locally advanced rectal cancer through gene expression microarrays, and to evaluate the response of the GARD model in predicting the efficacy of neoadjuvant radiotherapy. Fresh-frozen primary tumor from 64 patients with locally advanced rectal cancer undergoing neoadjuvant radiotherapy from 2015 to 2018 were included. The gene expression profile was analyzed using Affymetrix 3000Dx gene-chip scanner. The radiosensitivity index (RSI) and GARD were calculated using the pGRT™ algorithm. Neoadjuvant rectal cancer score (NAR) was selected as efficacy evaluation indicators. Patients were divided into high and low NAR scoring groups, and two-sample t-test was used to analyze the differences in GARD values between different NAR subgroups. ROC curves were used to calculate the cut-off values and the area under the curve (AUC) for assessing the validity of the GARD models. The personalized radiation dose ( pGRT dose )can be computed using the formula nd = GARD / (α + βd). Among patients, 1.5% T2, 46.3% T3, and 52.2% T4. Wherein pCR (n = 10; 15.6%) and no pCR (n = 54; 84.4%). The median NAR is 8.43 (rang from 0 to 50.34, IQR 3.75-14.98). NAR > 8.43 (n = 27; 42.2%) and NAR ≤ 8.43 (n = 37; 57.8%), suggesting that there are significant individual differences in clinical efficacy of patients with similar tumor stages and under the same treatment conditions. The median RSI is 0.48 (rang from 0.22 to 0.92, IQR 0.41-0.55). Median GARD was 18.40 rang from (rang from 2.26 to 37.52, IQR 14.94-22.28) within tumor tissue, suggesting individual differences in the efficacy of radiation therapy. The RSI value was significantly lower in the NAR low group (NAR ≤ 8.43) than in NAR high group (NAR > 8.43) (0.44 vs. 0.54, p = 0.0003). The GARD value was significantly higher in the NAR low group (NAR ≤ 8.43) than in NAR high group (NAR > 8.43) (21.01 vs. 15.88, p = 0.0004). Using the Receiver Operating Characteristic (ROC) curve analysis, a GARD threshold of 17 was identified as optimal, covering 37.5% of the 64-patient sample, with an area under the curve (AUC) of 0.75. In the external validation cohort, the high GARD score group demonstrated superior DFS compared to the low GARD score group(p < 0.001). Only 17% of patients had pGRT dose within the guideline recommended dose (45-50 Gy). The differences in NAR values among LARC patients receiving standard neoadjuvant radiotherapy suggest significant individual differences in clinical outcomes among patients with similar tumor stage and the same treatment conditions. Patients with a GARD value exceeding 17 exhibit a more favorable prognosis. Our results suggest that the gene expression-based pGRT™ algorithm has good efficacy prediction performance in preoperative concurrent radiotherapy for locally advanced rectal cancer, suggesting the potential clinical application of this method to guide the designation of individualized radiotherapy doses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405410PMC
http://dx.doi.org/10.1038/s41598-024-72818-wDOI Listing

Publication Analysis

Top Keywords

rectal cancer
20
locally advanced
16
advanced rectal
16
neoadjuvant radiotherapy
12
gard
11
genome-based model
8
model adjusting
8
dose gard
8
patients locally
8
radiation dose
8

Similar Publications

Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.

Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

Background/aim: The effectiveness of a transanal drainage tube (TAT) for the prevention of anastomotic leakage after double stapling technique (DST) anastomosis in colorectal cancer has been reported. Previously, TATs had been placed and connected to drainage bags. It was considered that a higher decompression effect could be expected by inserting an open-type TAT, without connection to a drainage bag.

View Article and Find Full Text PDF

The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC).

View Article and Find Full Text PDF

Background: Various methods exist to correct for intrafraction motion (IFM) of the prostate during radiotherapy. We sought to characterize setup corrections in our practice informed by the TrueBeam Advanced imaging package, and analyze factors associated with IFM.

Methods: 132 men received radiation therapy for prostate cancer with a volumetric modulated arc therapy technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!