Derangements in protein homeostasis and associated proteotoxicity mark acute, chronic, and drug-induced hepatocellular injury. Metabolic dysfunction-associated proteasomal inhibition and the use of proteasome inhibitors often underlie such pathological hepatic proteotoxicity. In this study, we sought to identify a candidate deubiquitinating enzyme (DUB) responsible for reversing the proteotoxic damage. To this end, we performed a siRNA screening wherein 96 DUBs were individually knocked down in HepG2 cells under proteasomal inhibitor-induced stress for dual readouts, apoptosis, and cell viability. Among the putative hits, we chose JOSD1, a member of the Machado-Josephin family of DUBs that reciprocally increased cell viability and decreased cell death under proteotoxicity. JOSD1-mediated mitigation of proteotoxicity was further validated in primary mouse hepatocytes by gain and loss of function studies. Marked plasma membrane accumulation of monoubiquitinated JOSD1 in proteotoxic conditions is a prerequisite for its protective role, while the enzymatically inactive JOSD1 C36A mutant was conversely polyubiquitinated, does not have membrane localisation and fails to reverse proteotoxicity. Mechanistically, JOSD1 physically interacts with the suppressor of cytokine signalling 1 (SOCS1), deubiquitinates it and enhances its stability under proteotoxic stress. Indeed, SOCS1 expression is necessary and sufficient for the hepatoprotective function of JOSD1 under proteasomal inhibition. In vivo, adenovirus-mediated ectopic expression or depletion of JOSD1 in mice liver respectively protects or aggravates hepatic injury when challenged with proteasome blocker Bortezomib. Our study thus unveils JOSD1 as a potential candidate for ameliorating hepatocellular damage in liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405666 | PMC |
http://dx.doi.org/10.1038/s41420-024-02177-y | DOI Listing |
bioRxiv
September 2024
Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A.
Proteostasis is vital for cellular health, with disruptions leading to pathologies including aging, neurodegeneration and metabolic disorders. Traditionally, proteotoxic stress responses were studied as acute reactions to various noxious factors; however, recent evidence reveals that many proteostasis stress-response genes exhibit ~12-hour ultradian rhythms under physiological conditions in mammals. These rhythms, driven by an XBP1s-dependent 12h oscillator, are crucial for managing proteostasis.
View Article and Find Full Text PDFCell Death Discov
September 2024
Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
Derangements in protein homeostasis and associated proteotoxicity mark acute, chronic, and drug-induced hepatocellular injury. Metabolic dysfunction-associated proteasomal inhibition and the use of proteasome inhibitors often underlie such pathological hepatic proteotoxicity. In this study, we sought to identify a candidate deubiquitinating enzyme (DUB) responsible for reversing the proteotoxic damage.
View Article and Find Full Text PDFHepatology
October 2024
Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA.
Background And Aims: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
May 2024
Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri. Electronic address:
Background & Aims: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2023
Faculty of Pharmacy, Department of Biochemistry, Ankara University, 06560, Anadolu, Ankara, Turkey.
Copper is an essential element for critical cellular functions such as mitochondrial respiration, cholesterol biosynthesis and immune response. Altered copper homeostasis has been associated with various disorders, including cancer. The copper overload is known to contribute to tumorigenesis, angiogenesis and metastasis, and recently it has been suggested that the elevated level of this element may also create vulnerability to a novel cell death mechanism, named cuproptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!