AI Article Synopsis

  • Individual participant data (IPD) meta-analysis combines and analyzes original data from various studies to identify how treatment effects vary among individuals, often using a two-stage statistical modeling process.
  • A new two-stage multivariate approach addresses challenges with continuous outcomes by analyzing non-linear interactions and multiple time-points, accommodating missing outcome data effectively.
  • This method was illustrated in a study on exercise interventions for osteoarthritis, revealing non-linear relationships and improved precision when analyzing all time-points together.

Article Abstract

Individual participant data (IPD) meta-analysis projects obtain, harmonise, and synthesise original data from multiple studies. Many IPD meta-analyses of randomised trials are initiated to identify treatment effect modifiers at the individual level, thus requiring statistical modelling of interactions between treatment effect and participant-level covariates. Using a two-stage approach, the interaction is estimated in each trial separately and combined in a meta-analysis. In practice, two complications often arise with continuous outcomes: examining non-linear relationships for continuous covariates and dealing with multiple time-points. We propose a two-stage multivariate IPD meta-analysis approach that summarises non-linear treatment-covariate interaction functions at multiple time-points for continuous outcomes. A set-up phase is required to identify a small set of time-points; relevant knot positions for a spline function, at identical locations in each trial; and a common reference group for each covariate. Crucially, the multivariate approach can include participants or trials with missing outcomes at some time-points. In the first stage, restricted cubic spline functions are fitted and their interaction with each discrete time-point is estimated in each trial separately. In the second stage, the parameter estimates defining these multiple interaction functions are jointly synthesised in a multivariate random-effects meta-analysis model accounting for within-trial and across-trial correlation. These meta-analysis estimates define the summary non-linear interactions at each time-point, which can be displayed graphically alongside confidence intervals. The approach is illustrated using an IPD meta-analysis examining effect modifiers for exercise interventions in osteoarthritis, which shows evidence of non-linear relationships and small gains in precision by analysing all time-points jointly.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jrsm.1750DOI Listing

Publication Analysis

Top Keywords

multiple time-points
12
ipd meta-analysis
12
individual participant
8
participant data
8
non-linear treatment-covariate
8
time-points continuous
8
estimated trial
8
trial separately
8
continuous outcomes
8
non-linear relationships
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!