A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bilberry metabolomic and proteomic profiling during fruit ripening reveals key dynamics affecting fruit quality. | LitMetric

AI Article Synopsis

  • Bilberry (Vaccinium myrtillus L.) is a nutrient-rich wild berry from northern Europe, known for its beneficial anthocyanins, but less is understood about its other quality traits like size and flavor during ripening.
  • The study used metabolomic and proteomic analysis across four ripening stages to uncover regulatory networks involving plant hormones that influence quality traits, showing how different metabolites are linked to fruit development.
  • Key findings include the role of gibberellic, jasmonic, and salicylic acids in unripe fruits, and the importance of abscisic acid and ethylene in ripening, potentially impacting future berry cultivation and applications in food and cosmetics.

Article Abstract

Bilberry (Vaccinium myrtillus L.) is a wild berry species that is prevalent in northern Europe. It is renowned and well-documented for its nutritional and bioactive properties, especially due to its anthocyanin content. However, an overview of biological systems governing changes in other crucial quality traits, such as size, firmness, and flavours, has received less attention. In the present study, we investigated detailed metabolomic and proteomic profiles at four different ripening stages of bilberry to provide a comprehensive understanding of overall quality during fruit ripening. By integrating omics datasets, we revealed a novel global regulatory network of plant hormones and physiological processes occurring during bilberry ripening. Key physiological processes, such as energy and primary metabolism, strongly correlate with elevated levels of gibberellic acids, jasmonic acid, and salicylic acid in unripe fruits. In contrast, as the fruit ripened, processes including flavour formation, cell wall modification, seed storage, and secondary metabolism became more prominent, and these were associated with increased abscisic acid levels. An indication of the increase in ethylene biosynthesis was detected during bilberry development, raising questions about the classification of non-climacteric and climacteric fruits. Our findings extend the current knowledge on the physiological and biochemical processes occurring during fruit ripening, which can serve as a baseline for studies on both wild and commercially grown berry species. Furthermore, our data may facilitate the optimization of storage conditions and breeding programs, as well as the future exploration of beneficial compounds in berries for new applications in food, cosmetics, and medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14534DOI Listing

Publication Analysis

Top Keywords

fruit ripening
12
metabolomic proteomic
8
physiological processes
8
processes occurring
8
bilberry
5
fruit
5
ripening
5
bilberry metabolomic
4
proteomic profiling
4
profiling fruit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!