Precise on-site monitoring of alkylresorcinols, a vital biomarker, is crucial for verifying whole wheat foods and accurately quantifying the whole wheat content in various consumer and industrial products. Herein, for the first time, we introduce a novel ratiometric fluorescence sensor (CDs@ZIF-8/CdTe@MIP) for ultrasensitive and selective detection of alkylresorcinols. 5-Heneicosylresorcinol (C21:0 AR), the primary alkylresorcinol homologue in whole wheat grains, was selected as the target analyte. This analyte was specifically and selectively recognized by the incorporation of a molecularly imprinted polymer (MIP) layer. Within this nanoreactor, blue-emitting carbon dots embedded in zeolitic imidazolate framework-8 (CDs@ZIF-8) and orange-emitting CdTe quantum dots served as the self-calibration signal and response signal, respectively. Exploiting a photoinduced electron transfer effect between CdTe and C21:0 AR, the established fluorescence sensor exhibited remarkable sensing performance, offering wide linear responses in 0.005-1 μg·mL and 1-80 μg·mL concentration ranges, and achieving a low detection limit of 1.14 ng·mL. The proposed assay effectively detected C21:0 AR in real samples, including 8 whole wheat foods and 19 whole wheat grains, demonstrating good recoveries and relative standard deviation. Furthermore, an intelligent sensing platform was established by integrating CDs@ZIF-8/CdTe@MIP with a smartphone-assisted device, thus validating the feasibility of visual and on-site monitoring of C21:0 AR. Because of its rapid response, portability, cost-effectiveness, superior sensitivity, and high selectivity, the proposed sensor serves as a reliable method for the analysis of C21:0 AR, thus having substantial potential for on-site monitoring of whole wheat foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c05220 | DOI Listing |
Food Chem
January 2025
College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.
View Article and Find Full Text PDFNutrients
January 2025
Department of Management, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.
Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.
Pathogens
January 2025
Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple species. In this study, seven strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the species complex (FGSC), species complex (FIESC), and species complex (FTSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!