Terrestrial enhanced rock weathering (ERW) is a promising carbon dioxide removal technology that consists in applying ground silicate rock such as basalt on agricultural soils. On top of carbon sequestration, ERW has the potential to raise the soil pH and release nutrients, thereby improving soil fertility. Despite these possible co-benefits, concerns such as heavy metal pollution or soil structure damage have also been raised. To our knowledge, these contrasted potential effects of ERW on soil fertility have not yet been simultaneously investigated. This field trial aimed at assessing the impact of ERW on biological, physical, and chemical soil properties in a temperate agricultural context. To do so, three vineyard fields in Switzerland were selected for their distinct geochemical properties and were amended with basaltic rock powder at a dose of 20 tons per hectare (2 kg.m). On each field, basaltic rock powder was either applied one year before the sampling campaign, one month before the sampling campaign, or not applied (control) for a total of 27 plots with 9 repetitions of each level. Overall, basaltic rock powder addition had a predominantly positive to neutral effect on soil fertility. Most soil properties showed no significant change either 1 month or 1 year post application. Nevertheless, our study highlighted a significant increase in earthworm abundance (+71 % on average), soil respiration (+50 %) and extractable sodium concentration (+23 %) as early as 1 month post application. The higher soil respiration raises the question of CO losses from organic matter mineralization that could limit ERW's efficiency. The increase in sodium raises concerns about a sodification risk potentially damaging soil fertility. These elements now require further investigation before enhanced rock weathering can be considered a viable and secure carbon dioxide removal technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176297DOI Listing

Publication Analysis

Top Keywords

soil fertility
16
enhanced rock
12
rock weathering
12
basaltic rock
12
rock powder
12
soil
11
biological physical
8
carbon dioxide
8
dioxide removal
8
removal technology
8

Similar Publications

Kazakhstan's insufficient food production contributes to its dependency on food imports, highlighting the need for science-based technologies to address land degradation and boost domestic production. The privatisation of land and the establishment of a market economy led to the division of collective farms and significant land fragmentation, resulting in a reduction of agricultural land by 10.6 million ha in the West Kazakhstan region, particularly between 1991 and 2000.

View Article and Find Full Text PDF

Continuous monocropping of peanuts (.) often results in yield decline and soil degradation. The combination of green manure (GM) with tillage practices has been proposed as a sustainable strategy to maintain high crop productivity and improve soil quality.

View Article and Find Full Text PDF

Insect farming is expected to increase in coming years, thus generating high quantities of frass (insect excreta). Frass valorization hinges on basic agronomic research prior to industry upscaling. Here, we investigated soil physiochemical properties, SMAF (Soil Management Assessment Framework) soil health, CO efflux, and bermudagrass [Cynodon dactylon (L.

View Article and Find Full Text PDF

Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.

View Article and Find Full Text PDF

Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!