Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was performed to investigate the proteomic basis underlying the interaction between vitamin D (VD) and insulin (I) within ovarian follicle using the pig as a model. Porcine antral follicles were incubated in vitro for 12 h with VD alone and I alone or in combination (VD + I) or with no treatment as the control (C). In total, 7690 and 7467 proteins were identified in the granulosa and theca interna compartments, respectively. Comparative proteomic analysis revealed 97 differentially abundant proteins (DAPs) within the granulosa layer and 11 DAPs within the theca interna layer. In the granulosa compartment, VD affected proteome leading to the promotion of cell proliferation, whereas I influenced mainly proteins related to cellular adhesion. The VD + I treatment induced granulosa cell proliferation probably via the DAPs involved in DNA synthesis and the cell cycle regulation. In the theca interna layer, VD alone or in co-treatment with I affected DAPs associated with cholesterol transport and lipid and steroid metabolic processes that was further confirmed by diminished lipid droplet accumulation. SIGNIFICANCE: The application of quantitative proteomics demonstrated for the first time the complexity of VD and I interactions in porcine ovarian follicle, providing a framework for understanding the molecular mechanisms underlying their cross-talk. Although identified DAPs were related to crucial ovarian processes, including the granulosa cell proliferation and cholesterol transport in the theca interna layer, novel molecular pathways underlying these processes have been proposed. The identified unique proteins may serve as indicators of VD and I interactions in both follicle layers, and could be useful biomarkers of ovarian pathologies characterized by impaired VD and I levels, such as polycystic ovary syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2024.105318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!