Explanation of puzzling FQHE at the filling fraction 3/4 in a band-hole 2D system in GaAs.

J Phys Condens Matter

Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.

Published: September 2024

A recent experiment revealed an unexpected FQHE at filling fraction 3/4 in a GaAs 2D hole system, which contradicts the composite fermion model prediction and the observation of a compressible Hall metal-type state in a twin 2D electron system in GaAs at the same filling fraction 3/4 at almost same other conditions. This finding challenges conventional effective single-quasiparticle model for FQHE exposing its limitations. We explain this experimental observation within a multiparticle approach based on a topological cyclotron commensurability criterion. This allows to generalize Laughlin function for filling fractions from the complete FQHE hierarchy including observable FQHE states at even denominator fractions. The topological multiparticle approach helps to decipher a structure of composite fermions and provides their generalization for so-called enigmatic states including even denominator filling fractions, and also for quantum fractional Hall-type behavior in Chern topological insulators without a magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad7b92DOI Listing

Publication Analysis

Top Keywords

filling fraction
12
fraction 3/4
12
fqhe filling
8
system gaas
8
multiparticle approach
8
filling fractions
8
fqhe
5
filling
5
explanation puzzling
4
puzzling fqhe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!