The selective cleavage of lignin C-C bonds is a highly sought-after process with the goal of obtaining low-molecular-weight aromatic chemicals from renewable resources. However, it remains a challenging task to achieve under mild conditions. Photocatalysis is a potentially promising approach to address this issue, but the development of efficient photocatalysts is still in progress. In this study, we introduce the heterostructured TiO@g-CNphotocatalyst for the development of a visible light photocatalytic procedure for the selective cleavage of lignin C-C bonds under mild conditions. The photocatalyst displays favourable visible light absorption, efficient charge separation efficiency, and promising reusability. A typical-O-4 dimer model, 2-phenoxy-1-phenylethanol, was effectively (96.0% conversion) and selectively (95.0 selectivity) cleaved under visible light at ambient conditions. This photocatalytic procedure was also effective when subjected to solar irradiation or other lignin dimer models with-O-4 or-1 linkages. This reaction occurred through a C-centred radical intermediate and a six-membered transition state with photogenerated holes as the primary active species. The C-OH oxidative dehydrogenation of the substrate could also take place but was a relatively minor route. This study provides a new photocatalytic procedure for visible-light-driven lignin valorisation and sheds light on the design of high-performance nanocomposite photocatalysts for C-C bond cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad7b3f | DOI Listing |
ChemSusChem
January 2025
Nanjing Forestry University, College of Light Industry and Food Engineering, CHINA.
Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China.
The high-temperature mechanical properties and fracture mechanism of selective laser melting (SLM) manufactured nickel-based alloy are highly important for its application. In this article, small punch test (SPT) method is used to study the mechanical properties of SLM-manufactured GH4169 over a wide temperature range from 25°C to 600°C. With the increase of temperature, the decreasing ratio of maximum load is only 18.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
Introducing distinctive functional groups to expand the structural diversity and improve the intrinsic properties of parent molecules has been an essential pursuit in organic chemistry. By using perfluoroalkyl halide (PFAH) as a nontraditional, readily available, ideal 1,2-difluoroalkenyl coupling partner, a defluorinative cyclization reaction of enamides for the construction of fluoroalkenyl oxazoles is first developed. The selective and controllable two-fold cleavage of vicinal C(sp)─F bonds in PFAH not only enables the introduction of a specific 1,2-difluoroalkenyl moiety with ease but also results in the functionalization of two C(sp)─H bonds of enamides without the need for metal catalyst, photocatalyst, oxidant, or light.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Peking University, College of Chemistry and Molecular Engineering, 292 Chengfu Road, 100871, Beijing, CHINA.
Metal carbides with earth-abundant elements are widely regarded as promising alternatives of noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H2 is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H2 becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!