Brain tumor segmentation by combining MultiEncoder UNet with wavelet fusion.

J Appl Clin Med Phys

Computer and Information Engineering Department, Tianjin Chengjian University, Tianjin, China.

Published: November 2024

Background And Objective: Accurate segmentation of brain tumors from multimodal magnetic resonance imaging (MRI) holds significant importance in clinical diagnosis and surgical intervention, while current deep learning methods cope with situations of multimodal MRI by an early fusion strategy that implicitly assumes that the modal relationships are linear, which tends to ignore the complementary information between modalities, negatively impacting the model's performance. Meanwhile, long-range relationships between voxels cannot be captured due to the localized character of the convolution procedure.

Method: Aiming at this problem, we propose a multimodal segmentation network based on a late fusion strategy that employs multiple encoders and a decoder for the segmentation of brain tumors. Each encoder is specialized for processing distinct modalities. Notably, our framework includes a feature fusion module based on a 3D discrete wavelet transform aimed at extracting complementary features among the encoders. Additionally, a 3D global context-aware module was introduced to capture the long-range dependencies of tumor voxels at a high level of features. The decoder combines fused and global features to enhance the network's segmentation performance.

Result: Our proposed model is experimented on the publicly available BraTS2018 and BraTS2021 datasets. The experimental results show competitiveness with state-of-the-art methods.

Conclusion: The results demonstrate that our approach applies a novel concept for multimodal fusion within deep neural networks and delivers more accurate and promising brain tumor segmentation, with the potential to assist physicians in diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540057PMC
http://dx.doi.org/10.1002/acm2.14527DOI Listing

Publication Analysis

Top Keywords

brain tumor
8
tumor segmentation
8
segmentation brain
8
brain tumors
8
fusion strategy
8
segmentation
6
fusion
5
brain
4
segmentation combining
4
combining multiencoder
4

Similar Publications

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Therapeutic efficacy of jeoryeong-tang in dextran sulfate sodium-induced mouse model of inflammatory bowel disease.

J Tradit Complement Med

January 2025

Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea.

Background: Jeoryeong-tang (JRT) was first recorded in . It is composed of Polyporus Sclerotium, Poria, Asini Corii Colla, Alisma Rhizome, and Talcum at the same weight ratio. These medicinal materials are known for diuretic and hemostatic effects and have been traditionally used to treat kidney and bladder diseases.

View Article and Find Full Text PDF

Postoperative concurrent chemoradiotherapy plus apatinib for patients with high-grade glioma: a retrospective cohort study.

Chin Clin Oncol

December 2024

Department of Radiotherapy, The 900th Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, China.

Background: Radiotherapy plus temozolomide followed by adjuvant temozolomide was the standard treatment for high-grade gliomas. This study aimed to explore the effectiveness and safety of the addition of apatinib in patients with high-grade gliomas after surgery.

Methods: In this retrospective cohort study, patients with high-grade glioma [World Health Organization (WHO) grade III or IV] treated with apatinib and concurrent chemoradiotherapy (cCRT) after surgery from October 2017 to February 2021 were reviewed.

View Article and Find Full Text PDF

Purpose: Especially in Europe, amino acid PET is increasingly integrated into multidisciplinary neuro-oncological tumor boards (MNTBs) to overcome diagnostic uncertainties such as treatment-related changes. We evaluated the accuracy of MNTB decisions that included the O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET information compared with FET PET results alone to differentiate tumor relapse from treatment-related changes.

Patients And Methods: In a single academic center, we retrospectively evaluated 180 MNTB decisions of 151 patients with CNS WHO grade 3 or 4 gliomas (n = 122) or brain metastases (n = 29) presenting equivocal MRI findings following anticancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!