Authentication of a product's originality by anticounterfeiting labels represents a crucial point toward protection against forgery. Fast and scalable fabrication methods of original labels with a high degree of protection are in high demand for the protection of valuable goods. Here, we propose a simple strategy for fabrication of hidden security tags with IR luminescent readout by the direct femtosecond laser patterning of silicon-erbium-silicon sandwiched thin films. The choice of laser processing parameters makes possible the creation of random or quasi-regular self-organized surface nanotextures. The controlled laser-driven oxidation accompanying this process provides simultaneous regulation of the film's optical properties and spontaneous emission yield of the embedded Er atoms. The regimes are detected when optically similar patterned areas demonstrate different Er emission intensities, allowing us to create hidden security tags with facile readout at the C-band telecommunication wavelengths. The obtained results take another step toward the application of IR-luminescent erbium-based anticounterfeiting labels for covert and/or forensic security levels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02051DOI Listing

Publication Analysis

Top Keywords

anticounterfeiting labels
8
hidden security
8
security tags
8
hidden patterns
4
security
4
patterns security
4
labels
4
security labels
4
labels authentication
4
authentication product's
4

Similar Publications

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.

Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.

View Article and Find Full Text PDF

PDDA-Assisted Synthesis of Magnetic Fluorescent FeO@SiO-CQD Composites.

Langmuir

December 2024

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Magnetic fluorescent nanomaterials have broad application prospects as taggants in fields such as anticounterfeiting identification, suspicious object tracking, and potential fingerprint recognition in forensic medicine. It is a common method to synthesize magnetic fluorescent composite nanoparticles by preparing a shell on the surface of magnetic particles to load fluorescent materials. In this work, a magnetic fluorescence nanohybrid was synthesized by in situ encapsulation of carbon quantum dots (CQDs) during the preparation of a SiO shell on the surface of FeO nanoparticles.

View Article and Find Full Text PDF

Pure red emission with spectral stability in full iodine-based quasi-2D perovskite films by controlling phase distribution.

Nanoscale

December 2024

School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

Quasi-2D perovskites have emerged as a promising candidate material for displays owing to their high photoluminescence quantum yields and low-cost solution synthesis. However, achieving pure red quasi-2D perovskite films with luminescence centered at 630 nm and a narrow emission band presents a critical challenge for high-definition displays. Herein, by incorporating 18-crown-6 as additives that simultaneously passivate defects and regulate phase distribution, full iodine-based quasi-2D perovskite films with a single red emission peak and spectral stability are designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!