Bacterial biofilms have been implicated in several chronic infections. After initial attachment, a critical first step in biofilm formation is a cell inducing a surface-sensing response. In the Gram-negative opportunistic pathogen , two second messengers, cyclic diguanylate monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), are produced by different surface-sensing mechanisms. However, given the disparate cellular behaviors regulated by these second messengers, how newly attached cells coordinate these pathways remains unclear. Some of the uncertainty relates to studies using different strains, experimental systems, and usually focusing on a single second messenger. In this study, we developed a tricolor reporter system to simultaneously gauge c-di-GMP and cAMP levels in single cells. Using PAO1, we show that c-di-GMP and cAMP are selectively activated in two commonly used experimental systems to study surface sensing. By further examining the conditions that differentiate a c-di-GMP or cAMP response, we demonstrate that an agarose-air interface activates cAMP signaling through type IV pili and the Pil-Chp system. However, a liquid-agarose interface favors the activation of c-di-GMP signaling. This response is dependent on flagellar motility and correlated with higher swimming speed. Collectively, this work indicates that c-di-GMP and cAMP signaling responses are dependent on the surface context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441478PMC
http://dx.doi.org/10.1073/pnas.2411981121DOI Listing

Publication Analysis

Top Keywords

c-di-gmp camp
16
second messengers
8
experimental systems
8
camp signaling
8
c-di-gmp
6
camp
6
surface interface
4
interface swimming
4
swimming motility
4
motility influence
4

Similar Publications

Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions.

Microbiol Res

December 2024

Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China. Electronic address:

This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors.

View Article and Find Full Text PDF

Background: Dictyostelia are soil amoebas that aggregate to form fruiting bodies with spores and stalk cells in response to starvation. Where known, species across the dictyostelid phylogeny use secreted cAMP, detected by cAMP receptors (cARs) to induce the differentiation of spores and to organize fruiting body construction. However, recent deletion of the single of ) left both its fruiting bodies and spores intact.

View Article and Find Full Text PDF

Microplastics (MPs) colonized by pathogens pose significant risks to the environment and health of animals and humans, however, the strategies for pathogens colonization in MPs and the effects of its colonization on spread of pathogens have not been fully characterized. Here, we investigated the biofilm formation mechanism regulated by c-di-GMP in Hafnia paralvei Z11, and determined the effect of MPs colonized by H. paralvei Z11 on the spread of strain Z11.

View Article and Find Full Text PDF

Bacterial biofilms have been implicated in several chronic infections. After initial attachment, a critical first step in biofilm formation is a cell inducing a surface-sensing response. In the Gram-negative opportunistic pathogen , two second messengers, cyclic diguanylate monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), are produced by different surface-sensing mechanisms.

View Article and Find Full Text PDF

Taxonomic and functional characterization of biofilms from a photovoltaic panel reveals high genetic and metabolic complexity of the communities.

J Appl Microbiol

September 2024

Programa de Pós-Graduação em Tecnologia de Produtos e Processos, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 30510-000, Belo Horizonte, MG, Brazil.

Aims: Biofilms are complex microbial cell aggregates that attach to different surfaces in nature, industrial environments, or hospital settings. In photovoltaic panels (PVs), biofilms are related to significant energy conversion losses. In this study, our aim was to characterize the communities of microorganisms and the genes involved in biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!